
Introduction to C Programming Module 2

Rajashree M Byalal, Asst Prof, Dept of CSE, APSCE, Bangalore

1

Module 2

OPERATORS IN C

An operator is a symbol that specifies the mathematical, logical or relational operation to be

performed. C language supports different types of operators, which can be used with variables and

constants to form expression. C divides the operators into the following groups:

 Arithmetic operator

 Relational operators

 Equality operators

 Logical operators

 Unary operators

 Conditional operators

 Bitwise operators.

 Comma operator

 Sizeof operator

Arithmetic variables

Consider three variables declared as

int a=9, b=3 , result;

table below shows the arithmetic operators, their syntax and usage in c

Operation Operator Syntax Comment Result

Multiply * a*b result = a*b 27

Divide / a/b result = a/b 3

Addition + a+b result = a+b 12

Subtraction - a-b result = a-b 6

Modulus % a%b result = a%b 0

Arithmetic operators can be applied to any integer or floating-point numbers. The addition, subtraction,

multiplication and division perform the usual arithmetic operations in C.

The modulus operator (%) finds the reminder of an integer division. This operator can be applied to

only integers and not to floating point and double operands.

Relational operators

A relational operator also known as comparison operators, that compares two values. Expression

with relational operators are called relational expression.

Relational operators returns a true(1) value if the condition holds , otherwise returns a false(0).

Introduction to C Programming Module 2

Rajashree M Byalal, Asst Prof, Dept of CSE, APSCE, Bangalore

2

Relational operators can be used to determine the relationship between two operands. These are

illustrated below.

Operator Meaning Example

< Less than 3<5 gives 1

> Greater than 7>9 gives false

<= Less than or equal to 100<=100 gives 1

>= Greater than equal to 50>=100 gives 0

The relational operators are evaluated from left to right. The operands of relational operator must

evaluate to a number.

When arithmetic expressions are used on either side of the relational operator, then first the arithmetic

expression will be evaluated and then the result will be compared. This is because arithmetic operators

have higher precedence that the relational operators.

Relational operators should not be used for comparing string.

Equality operator

Used to compare the operands for strict equality or inequality. They are (==) and not equal to (!=)

operators. The equality operators have lower precedence than the relational operators.

Operator Meaning

== Returns 1 if both operands are equal, 0 otherwise.

!= Returns 1 if both operands do not have same value,

0 otherwise.

Logical operators

C language supports three logical operators- logical AND(&&), logical OR(||) and logical NOT(!). the

logical expressions are evaluated from left to right.

Logical AND

It is a binary operator, which simultaneously evaluates two values or relational expression. If both the

operands are true, then the whole expression evaluates to true. If both or one of the operands are false,

then the whole expression evaluates to false.

A B A&&B

0 0 0

0 1 0

1 0 0

1 1 1

Example :

(a<b) && (b>c)

The whole expression is true only if both expressions are ture, i.e. , if b is greater than both a and c.

Logical OR

Introduction to C Programming Module 2

Rajashree M Byalal, Asst Prof, Dept of CSE, APSCE, Bangalore

3

It is binary operator that returns a false value if both the operands are false. Otherwise it returns a true.

Value. The truth table of logical OR operator is given below .

A B A||B

0 0 0

0 1 1

1 0 1

1 1 1

Example :

(a<b) || (b>c)

The whole expression is true only if both expressions are ture, i.e. , if either b is greater than a or b is

greater than c b is greater than both a and c.

Logical NOT

The logical not take a single expression and negates the value of the expression. It produces a 0 if the

expression evaluates to a non-zero value and produces a 1 if the expression evaluates a 0.

It just reverses the value of the expression.

A !A

0 1

1 0

Example

int a=1, b;

b= !a;

now the value of b=0. This is because value of a=1. !a=0. The value of !a is assigned to b , hence the

result.

Unary operators

Unary operators are the operators that perform operations on a single operand to produce a new value.

 Unary Minus- The minus operator (–) changes the sign of its argument. A positive number

becomes negative, and a negative number becomes positive.

int a = 10

int b = -a; //value of b = -10

 Increment (++) and Decrement (- -) operator

The increment operator (++) is used to increment the value of the variable by 1. The increment

can be done in two ways:

Introduction to C Programming Module 2

Rajashree M Byalal, Asst Prof, Dept of CSE, APSCE, Bangalore

4

a) prefix increment- In this method, the operator precedes the operand (e.g., ++a). The

value of the operand will be altered before it is used.

Example: int a = 1;

int b = ++a; // b = 2

b) postfix increment- In this method, the operator follows the operand (e.g., a++). The

value operand will be altered after it is used.

Example: int a = 1;

int b = a++; // b = 1

int c = a; // c = 2

#include <stdio.h>

int main()

{

int a = 5;

int b = 5;

printf("Pre-Incrementing a = %d\n", ++a);

printf("Post-Incrementing b = %d", b++);

return 0;

}

 The decrement operator (—) is used to decrement the value of the variable by 1. The

decrement can be done in two ways:

A. prefix decrement- In this method, the operator precedes the operand (e.g., – -a). The

value of the operand will be altered before it is used.

Example:

int a = 1;

int b = --a; // b = 0

B. postfix decrement- In this method, the operator follows the operand (e.g., a- -). The

value of the operand will be altered after it is used.

Example: int a = 1;

int b = a--; // b = 1

int c = a; // c = 0

#include <stdio.h>

int main()

{

int a = 5;

int b = 5;

printf("Pre-Decrementing a = %d\n", --a);

printf("Post-Decrementing b = %d", b--);

return 0;

}

Introduction to C Programming Module 2

Rajashree M Byalal, Asst Prof, Dept of CSE, APSCE, Bangalore

5

Conditional operator

The conditional operator in C is kind of similar to the if-else statement. The conditional operator takes

less space and helps to write the if-else statements in the shortest way possible. It is also known as the

ternary operator in C as it operates on three operands.

The conditional operator can be in the form

variable = Expression1 ? Expression2 : Expression3;

Or

variable = (condition) ? Expression2 : Expression3;

Example
#include <stdio.h>

int main()
{

int m = 5, n = 4;

(m > n) ? printf("m is greater than n that is %d > %d",

m, n)
: printf("n is greater than m that is %d > %d",

n, m);

return 0;

}
Bitwise operators

The bitwise operators are the operators used to perform the operations on the data at the bit-level.

When we perform the bitwise operations, then it is also known as bit-level programming. It consists

of two digits, either 0 or 1. It is mainly used in numerical computations to make the calculations

faster.

We have different types of bitwise operators in the C programming language. The following is the

list of the bitwise operators:

Operator Meaning of operator

& Bitwise AND operator

| Bitwise OR operator

^ Bitwise exclusive OR operator

~ One's complement operator (unary

operator)
<< Left shift operator

 Bitwise AND operator- Bitwise AND operator is denoted by the single ampersand sign (&).

Two integer operands are written on both sides of the (&) operator. If the corresponding bits of

both the operands are 1, then the output of the bitwise AND operation is 1; otherwise, the output

would be 0.

Introduction to C Programming Module 2

Rajashree M Byalal, Asst Prof, Dept of CSE, APSCE, Bangalore

6

For example, We have two variables a and b.

a =6;

b=4;

The binary representation of the above two variables are given below:

a = 0110

b = 0100

When we apply the bitwise AND operation in the above two variables, i.e., a&b, the output

would be:

Result = 0100

 Bitwise OR operator- The bitwise OR operator is represented by a single vertical sign (|). Two

integer operands are written on both sides of the (|) symbol. If the bit value of any of the operand

is 1, then the output would be 1, otherwise 0.

For example,

We consider two variables,

a = 23;

b = 10;

The binary representation of the above two variables would be:

a = 0001 0111

b = 0000 1010

When we apply the bitwise OR operator in the above two variables, i.e., a|b , then the output

would be:

Result = 0001 1111

 Bitwise exclusive OR operator- Bitwise exclusive OR operator is denoted by (^) symbol. Two

operands are written on both sides of the exclusive OR operator. If the corresponding bit of any

of the operand is 1 then the output would be 1, otherwise 0.

For example,

We consider two variables a and b,

a = 12;

b = 10;

The binary representation of the above two variables would be:

a = 0000 1100

b = 0000 1010

When we apply the bitwise exclusive OR operator in the above two variables (a^b), then the

result would be:

Result = 0000 1110

Comma operator

Introduction to C Programming Module 2

Rajashree M Byalal, Asst Prof, Dept of CSE, APSCE, Bangalore

7

The comma operator in C takes two operands. It takes by evaluating the first and discarding its

value, and then evaluates the second and returns the value as result of the expression. With

multiple comma separated values the expression is evaluated from left to right and yields the

rightmost result. The comma operator has the least precedence.

Example

int a=2, b=3, x=0

x=(++a, b=+a);

output: the value of x=6

sizeof() operator

It determines the size of the expression or the data type specified in the number of char-sized

storage units. The sizeof() operator contains a single operand which can be either an expression

or a data typecast where the cast is data type enclosed within parenthesis.

int a=2;

unsigned int result;

result =sizeof(a);

output: the value of result =2,

which is the space required to store the variable a in the memory. Since a in an integer, it

requires 2 bytes of storage space.

Operator precedence chart

Operator precedence determines the grouping of terms in an expression and decides how an expression

is evaluated. Certain operators have higher precedence than others; for example, the multiplication

operator has a higher precedence than the addition operator.

For example, x = 7 + 3 * 2; here, x is assigned 13, not 20 because operator * has a higher precedence

than +, so it first gets multiplied with 3*2 and then adds into 7.

Here, operators with the highest precedence appear at the top of the table, those with the lowest appear

at the bottom. Within an expression, higher precedence operators will be evaluated first.

Introduction to C Programming Module 2

Rajashree M Byalal, Asst Prof, Dept of CSE, APSCE, Bangalore

8

Type conversion and type casting

Type conversion or type casting of variables refers to changing a variable of one datatype to another.

Type conversion is done implicitly, whereas typecasting has to be done explicitly by the programmer.

Type conversion

Introduction to C Programming Module 2

Rajashree M Byalal, Asst Prof, Dept of CSE, APSCE, Bangalore

9

Type conversion is done when the expression has variables of different types. To evaluate the

expression , the datatype is promoted from lower to higher level where the hierarchy of data types can

be given as : double, float, long, short and char.

Example :

float x;

int y=3

x=y; //the integer data type is promoted to float. This is known as Promotion.

 float operands are converted to double.

 char or short operands whether signed or unsigned are converted to int.

Introduction to C Programming Module 2

Rajashree M Byalal, Asst Prof, Dept of CSE, APSCE, Bangalore

10

 if any one operand is double, the other is also converted to double. Hence the result is also

double.

 If any one operand is long , the other is also converted to double. Hence the result is also long.

Type casting

It is also known as forced conversion. Type casting an arithmetic expression tell the compiler to

represent the expression in a certain way.

It is done when the value of higher datatype has to be converted into the value of lower data type.

But it has to be done by the programmer and not in the control of compiler.

Example

float salary =10000.000

int sal

sal =(int) salary;

Type casting is also done in arithmetic operations to get correct results. For example when dividing

two integers , the result can be of float type. Also when multiplying two integers the result can be of

long int . so to get correct precision type casting can be done.

int a=500, b=70;

float res;

res = (float)a/b;

Principles of Programming using C Module 2

Rajashree M Byalal, Asst Prof, Dept. of CSE, APSCE, Bangalore

11

Unconditional

type

Switch Nested if If-else

ladder
If-else if

Conditional

type

Selection /branching

statements

Decision control and looping statements

Introduction to decision control:

 The code in c program is executed sequentially from the first line of the program to its last line,

i.e., the second statement is executed after the first, the third statement is executed after the

second and so on.

 C support two types of decision control statements that can alter the flow of sequence of
instructions. These include conditional and unconditional branching.

Conditional statements:.

 The conditional branching statements help to jump from one part of the program to another
depending on whether a particular condition is satisfied or not.

 The decision control statement includes:

1. if statement

2. if- else statement

3. if-else ladder

4. Nested if

5. Switch

if statement:

The if statement is the simplest form of decision control statements that is frequently used indecision
making.

Principles of Programming using C Module 2

Rajashree M Byalal, Asst Prof, Dept. of CSE, APSCE, Bangalore

12

if (test Expression)

{

Statement1;

}

Statement2;

Syntax:

 .The if block may include one statement or n statements enclosed within curly brackets. First
the test expression is evaluated.

 If the test expression is true, the statement of if block (statement 1 to n) are executed, otherwise

these statements will be skipped and the execution will jump to statement.

 The statement in an if construct is any valid c language statement and the test expression is any

valid C language expression that may include logical operators.

 Note that there is no semicolon after the test expression. This is because the condition and
statement shouldbe placed together as a single statement.

Example:

#include

<stdio.h>

int main ()

{

/* local variable definition */

int a = 10;

/* check the boolean condition using if statement

*/

if(a < 20)

{

/* if condition is true then print the following */

printf("a is less than 20\n");

}

return 0;

}

Test

expression
false

true

Statement X

Statement block 1

Principles of Programming using C Module 2

Rajashree M Byalal, Asst Prof, Dept. of CSE, APSCE, Bangalore

13

if (test Expression)

{

Statement1;  true-block

}

else

{

Statement2; true-block

}

Statement X;

if-else statement:

 The if-else statement is an extension of simple if statement.

 The test expression is evaluated, if the result is true, the statement followed by the expression is

executed else if the expression is false, the statement is skipped by the compiler.

Syntax:

 If the Expression is true (or non-zero) then Statement1 will be executed; otherwise ifit is

false (or zero),then Statement2 will be executed.

 In this case either true block or false block will be executed, but not both.

 In both the cases, the control is transferred subsequently to the Statement X.

Example:

#include <stdio.h>int

main () {

/* local variable definition */int a

= 100;

/* check the boolean condition */if(a <
20) {

/* if condition is true then print the following */

printf("a is less than 20\n");

} else {

/* if condition is false then print the following */

printf("a is not less than 20\n");
}
printf("value of a is : %d\n", a);return 0;

}

Principles of Programming using C Module 2

Rajashree M Byalal, Asst Prof, Dept. of CSE, APSCE, Bangalore

14

Nested if .. else statement:

When a series of decisions are involved, we have to use more than one if..else statement in nested

form as shown below in the general syntax.

Syntax

if (Expression1)

{

if(Expression2)

{

Statement1;

}

else

{

Statement2;

}

}

else if(Expression3)

{

Statement3;

}

else

{

Statement4;

}

 If Expression1 is true, check for Expression2, if it is also true then Statement1 isexecuted.

 If Expression1 is true, check for Expression2, if it is false then Statement2 is executed.

 If Expression1 is false, then Statement3 is executed.

 Once we start nesting if ..else statements, we may encounter a classic problem known as

dangling else.

 This problem is created when no matching else for every if.

 C solution to this problem is a simple rule “always pair an else to most recentunpaired if in

the currentblock”.

 Solution to the dangling else problem, a compound statement.

 In compound statement, we simply enclose true actions in braces to make thesecond if a

compoundstatement.

Example:

include <stdio.h>

int main()

{

int age;

Principles of Programming using C Module 2

Rajashree M Byalal, Asst Prof, Dept. of CSE, APSCE, Bangalore

15

printf("Please Enter Your Age Here:\n");

scanf("%d",&age);

if (age < 18)

{

printf("You are Minor.\n"); printf("Not Eligible to Work");

}

else

{

if (age >= 18 && age <= 60)

{

printf("You are Eligible to Work \n");

printf("Please fill in your details and apply\n");

}

else

{

printf("You are too old to work as per the Government rules\n");

printf("Please Collect your pension! \n");

}

}

return 0;

}

if –else ladder:

There is another way of putting ifs together when multipath decisions are involved. A multi path

decision is a chain of ifs in which the statement associated with eachelse is an if.

syntax:

if (Expression1)

{

Statement1;

}

else if(Expression2)

{

Statement2;

}

else if(Expression3)

{

Statement3;

}

else

{

Statement 4;

}

Next Statement ;

Principles of Programming using C Module 2

Rajashree M Byalal, Asst Prof, Dept. of CSE, APSCE, Bangalore

16

 This construct is known as the else if ladder.
 The conditions are evaluated from the top (of the ladder), downwards. As soon as true condition is

found, the statement associated with it is executed and control transferred to the Next statement

skipping the rest of the ladder.

 When all conditions are false then the final else containing the default Statement4 will be executed.

 It is not necessary that every if statement should have an else block as C supports simple if

statements. After the first test expression or the first if branch, the programmer can have as many

else-if branches as he wants depending on the expressions that have to be tested.

Example:

#include<stdio.h>
void main()

{

int a=20, b=5,c=3;

if((a>b) && (a>c))

{

printf(“A is greater\n”);

}

else if((b>a) && (b>c))

{

printf(“B is greater\n”);

}

else if((c>a) && (c>b))

{

printf(“C is greater\n”);

}

else

{

printf(“all are equal”);

}

}

Principles of Programming using C Module 2

Rajashree M Byalal, Asst Prof, Dept. of CSE, APSCE, Bangalore

17

switch(choice)

{
case label1: block1;

break; case
label2: block2;

break;

case label3: block-3;

break;
default: default-block;

break;

}

Switch case statement:

 C language provides a multi-way decision statement so that complex else-if statements can be

easily replaced by it. C language’s multi-way decision statement is called switch.

 General syntax of switch statement is as follows:

 Here switch, case, break and default are built-in C language words.

 If the choice matches to label1 then block1 will be executed else if it evaluates to label 2 then

block2will be executed and so on.

 If choice does not matches with any case labels, then default block will be executed.

The choice is an integer expression or characters.

 The label1, label2, label3,….are constants or constant expression evaluate to integerconstants.

 Each of these case labels should be unique within the switch statement. block1, block2,

block3,are statement lists and may contain zero or more statements.

 There is no need to put braces around these blocks. Note that case labels end with colon(:).

 Break statement at the end of each block signals end of a particular case andcauses an exit

from switch statement.

 The default is an optional case when present, it will execute if the value of the choicedoes

not match with any of the case labels

Principles of Programming using C Module 2

Rajashree M Byalal, Asst Prof, Dept. of CSE, APSCE, Bangalore

18

Example:

Label  Number Label  Character

#include<stdio.>

#include<stdlib.h

>void main()

{

int ch,a,b,res;

float div;

printf(“Enter two numbers:\n”);

scanf(“%d%d”,&a,&b);

printf(“1.Addition\n 2.Subtraction\n

3.Multiplication\n 4.Division\n 5.Remainder\n”);

printf(“Enter your choice:\n”);

scanf(“%d”,&ch);

switch(ch)

{

case 1: res=a+b;

break;

case 2: res=a-b;

break;

case 3: res=a*b;

break;

case 4:div=(float)a/b;

break;

case 5: res=a%b;

break;

default: printf(“Wrong choice!!\n”);

}

printf(“Result=%d\n”,res);

}

}

#include<stdio.>

#include<stdlib.h

>void main()

{

int a,b,res;

char ch;

float div;

printf(“Enter two numbers:\n”);

scanf(“%d%d”,&a,&b);

printf(“a.Addition\n b.Subtraction\n

c.Multiplication\n d.Division\n e.Remainder\n”);

printf(“Enter your choice:\n”);

scanf(“%c”,&ch);

switch(ch)

{

case ‘a’: res=a+b;

break;

case ‘b’: res=a-b;

break;

case ‘c’: res=a*b;

break;

case ‘d’:

div=(float)a/

b;break;

case ‘e’ : res=a%b;

break;

default: printf(“Wrong choice!!\n”);

}

printf(“Result=%d\n”,res);
}

In this program if ch=1 case ‘1’ gets executed and if ch=2, case ‘2’ gets executed and so on.

Principles of Programming using C Module 2

Rajashree M Byalal, Asst Prof, Dept. of CSE, APSCE, Bangalore

19

Statement X

Update the

condition
conditio

n

false true Statement block

Statement Y

Statementx;
while (condition)

{

statement-block;

}

Statement Y;

Iterative statements:

Iterative statements are used to repeate the execution of a list of statements,depending on the value of an

integer expression. C language supports 3 types of iterative statements also know as“looping

statements”.They are

1. While

2. Do-while loop

3. For loop

While loop (pre-tested/entry controlled):

 The while loop provides a mechanism to repeate one or more statements while a particular
condition is true.

 In while loop the condition is tested before any of the statements in the statement block is

executed.If the condition is true , only the the statements will be executed otherwise if the
condition is false,the control will jump to statement Y ,which is the immediate statement outside

the while loop block.

 From the flow chart diagram ,it is clear that we nee dto constantly update the condition of the

while loop.’

 The while loop will execute as long as the condition is true

 Note that if the condition is never update and the condition never becomes false then the

computer will run into an infinite loop which is never desirable.

 A while loop is also referred to as a top-checking loop since the contol condition is placed as the

first line of the code.If the control condition evaluates to false ,then the statements enclosed in
the loop are never executed.

Syntax:

Principles of Programming using C Module 2

Rajashree M Byalal, Asst Prof, Dept. of CSE, APSCE, Bangalore

20

#include <stdio.h>

int main () {

/* local variable definition */

int a = 10;

/* while loop execution */
while(a < 20) {

printf("value of a: %d\n", a);

a++;

}

return 0;

}

Example:

do-while: It is a post-test loop (also called exit controlled loop) it has two keywords do and while. The

General syntax:

Statement X

do

{
statement-block;

}while(condition);

Statement Y

 The do-while loop is similar to the while loop. The only difference is that in do-while loop, the

test condition is tested at the end of the loop.

Statement X

Statement block

Update the

condition

expression

true
condition

false

Statement Y

Principles of Programming using C Module 2

Rajashree M Byalal, Asst Prof, Dept. of CSE, APSCE, Bangalore

21

#include <stdio.h>

int main () {

/* local variable definition */

int a = 10;

/* do loop execution */

do {

printf("value of a: %d\n", a);

a = a + 1;

}while(a < 20);

return 0;

}

 Now that the test condition is tested at the end, this clearly means that the body of the loop gets

executed at least once.

 Note that the test condition is enclosed in parentheses and followed by a semicolon. The

statement blocks are enclosed within curly brackets. The curly bracket is optional if there is only

one statement in the body of the do-while loop.

 The major disadvantage of using a do-while loop is that it always executes at least once, even if

the user enters some invalid data, the loop will execute. One complete execution of the loop

takes place before the first comparison is actually done.

Example:

Output:

for loop:

 Similar to the while and do-while loops, the for loop provides a mechanism to repeat atask

until a particular condition is true.

value of a: 10

value of a: 11

value of a: 12

value of a: 13

value of a: 14

value of a: 15

value of a: 16

value of a: 17

value of a: 18

value of a: 19

Principles of Programming using C Module 2

Rajashree M Byalal, Asst Prof, Dept. of CSE, APSCE, Bangalore

22

 For loop is usually known as determinate or definite loop because the programmer

knowsexactly how many times the loop will repeat.

 The number of times the loop has to be executed can be determined mathematically

by checking the logic of the loop.

 When a for loop is used, the loop variable is initialized only once. With every

iteration of the loop, the value of the loop variable is updated and the condition is

checked.

 If the condition is true, the statement block of the loop is executed, else the

statements comprising the statement block of the for loop are skipped and the

control jumps to the immediate statement following the for loop body.

 In the syntax of for loop, initialization of the loop variable allows the programmer to

giveit a value.

 Second, the condition specifies that while the condition expression is TRUE the

loop should continue to repeat itself.

 Every iteration of the loop must make the condition near to approachable. So, with

every iteration the loop variable must be updated.

Syntax:

for (initialization; condition;
increment/decrement/update);

{

Statement block;

}

Statement Y;

Initialization of loop variable

Controllin

g

fals

tru

Statement block

Update the loop

Statement Y

Principles of Programming using C Module 2

Rajashree M Byalal, Asst Prof, Dept. of CSE, APSCE, Bangalore

23

#include <stdio.h>

int main () {

int a;

/* for loop execution */

for(a = 10; a < 20; a = a + 1){

printf("value of a: %d\n", a);

}

return 0;

}

value of a: 10

value of a: 11

value of a: 12

value of a: 13

value of a: 14

value of a: 15

value of a: 16

value of a: 17

value of a: 18

value of a: 19

Example:

Output:

Principles of Programming using C Module 2

Rajashree M Byalal, Asst Prof, Dept. of CSE, APSCE, Bangalore

24

for (init; condition; increment) {

for (init; condition; increment) {
statement(s);

}

statement(s);

}

Difference between while and do-while loop:

While do… while

It is a pre test loop. It is a post test loop.

It is an entry controlled loop. It is an exit controlled loop.

The condition is at top. The condition is at bottom.

There is no semi colon at the end of while. The semi colon is compulsory at the end of while.

It is used when condition is important. It is used when process is important.

Here, the body of loop gets executed if and only if

condition is true.

Here, the body of loop gets executed atleast once

even if condition is false.

SYNTAX, FLOWCHART, EXAMPLE (Same as in

explanation)

SYNTAX, FLOWCHART, EXAMPLE (Same as in

explanation)

Nested loop:

 Loop that can be placed inside other loops. Although this feature will work with any

loop such as while, do-while and for but it is most commonly used with the for

loop, becauseit this is easiest to control.

 A for loop can be used to control the number of times that a particular set of

statements will be executed. Another outer loop could be used to control the number

of times that a whole loop is repeated.

Syntax:

The syntax for a nested for loop statement in C is as follows −

The syntax for a nested while loop statement in C programming language is as follows

while(condition) {

while(condition) {

statement(s);
}

statement(s);

}

Principles of Programming using C Module 2

Rajashree M Byalal, Asst Prof, Dept. of CSE, APSCE, Bangalore

25

do {

statement(s);

do {

statement(s);

}while(condition);

}while(condition);

The syntax for a nested do...while loop statement in C programming language is as follows −

NOTE: A final note on loop nesting is that you can put any type of loop inside any other type of loop

Example:

Jumping statements:

Break and continue: break and continue are unconditional control construct.

1. Break

 It terminates the execution of remaining iteration of loop.

 A break can appear in both switch and looping statements.

 In switch statement if the break statement is missing then every case from the matched case label till

the end of the switch, including the default is executed.

Syntax Example

while(condition)

{

Statements;

if(condition)

break;

Statements;

}

OR

for()

{

statements;

#include<stdio.h>

void main()
{

int i;

for(i=1; i<=5; i++)

{

if(i==3)

break;

printf(“%d”, i)

}

}

for(i=0; i<2; i++)

{

for(j=0; j<2; j++)

{

scanf(“%d”, &a[i][j])

}

}

Principles of Programming using C Module 2

Rajashree M Byalal, Asst Prof, Dept. of CSE, APSCE, Bangalore

26

if(condition)

break;

statements;

}

OR

do{

if

(condition)

break;

}while(condition);

OUTPUT 1 2

2. Continue

 It terminates only the current iteration of the loop.

 Similar to the break statement the continue statement can only appear in the body of a

loop.

 When the compiler encounters a continue statement then the rest of the statements in the

loop are skipped and the control is unconditionally transferred to the loop-continuation

portion of the nearest enclosing loop.

Syntax Example

while(condition)

{

Statements;

if(condition)

continue;

Statements;

}

OR

for()

{

statements;

if (condition)

continue;

statements;

}

OR

do{

if (condition)

continue;

}while(condition);

#include<stdio.h>

void main()

{
int i;

for(i=1; i<=5; i++)

{

if(i==3)

continue;

printf(“%d”, i)

}

}

OUTPUT 1 2 4 5

Principles of Programming using C Module 2

Rajashree M Byalal, Asst Prof, Dept. of CSE, APSCE, Bangalore

27

3. GOTO statement:

 The goto statement is used to transfer control to a specified label. However the label

must reside in the same function and can appear only before one statement in the

same function.

 Here, label is an identifier that specifies the place where the branch is to be made.

Label can be any valid variable name that is followed by a colon (:).

 The label is placed immediately before the statement where the control has to be

transferred.

 The label can be placed anywhere in the program either before or after the goto

statement.

 Whenever the goto statement is encountered the control is immediately transferred

to the statements following the label. Therefore goto statement breaks the normal

sequential execution of the program.

 If the label is placed after the goto statement , then it is called a forward jump and in

case. it is located before the goto statement, it is said to be a backward jump.

Syntax Example

goto

label;

statement;

statement;

label:

void main()
{

int a=5,

b=7;

goto end;

a=a+1;

b=b+1;

end: printf(“a=%d b=%d”, a,b);

}

OUTPUT: 5,7

Principles of Programming using C Module 2

Rajashree M Byalal, Asst Prof, Dept. of CSE, APSCE, Bangalore

28

1. Develop a C program that takes three coefficients (a, b, and c) of a quadratic equation ; (ax2 + bx + c) as

input and compute all possible roots and print them with appropriate messages.

2. Explain the working of goto statement in C with example.

3. Explain switch statement with syntax and example
4. Develop a simple calculator program in C language to do simple operations like addition, subtraction,

multiplication and division. Use switch statement in your program

5. Explain with syntax, if and if-else statements in C program.

6. Explain with examples formatted input output statements in C
7. Demonstrate the functioning of Bitwise operator in C

8. Distinguish between the break and continue statement

9. Describe any 4 types of operators in C with example
10. Differentiate between type conversion and type casting in C

11. Define looping. Explain different types of looping with suitable example
12. Explain unconditional statements with example

13. Write a c program to find greatest of three numbers using ternary operator

14. List and explain unconditional branching statements with example
15. List and explain conditional branching statements with example

	OPERATORS IN C
	Arithmetic variables
	Relational operators
	Equality operator
	Logical operators
	 Increment (++) and Decrement (- -) operator
	variable = Expression1 ? Expression2 : Expression3;
	variable = (condition) ? Expression2 : Expression3;
	Operator precedence chart

	Type conversion and type casting
	Decision control and looping statements
	Introduction to decision control:
	Conditional statements:.

	if statement:
	Syntax:
	Example:
	if-else statement:
	Syntax:
	Syntax
	if –else ladder:
	syntax:
	Example: (1)
	Switch case statement:
	Example: (2)
	Iterative statements:
	While loop (pre-tested/entry controlled):
	Syntax: (1)
	Example: (3)
	for loop:
	Syntax: (2)
	Output:
	Nested loop:
	Syntax: (3)
	Jumping statements:
	3. GOTO statement:

