
 

 

Module -2 

Introduction  to Hadoop 

 Big Data Programming Model 

A programming model is centralized computing of data in which the data is transferred from 

multiple distributed data sources to a central server. Analyzing, reporting, visualizing, business- 

intelligence tasks compute centrally. Data are inputs to the central server. 

Another programming model is distributed computing that uses the databases at multiple 

computing nodes with data sharing between the nodes during computation.  Distributed 

computing in this model requires the cooperation (sharing) between the DBs in a transparent 

manner. Transparent means that each user within the system may access all the data within all 

databases as if they were a single database. A second requirement is location independence. 

Analysis results should be independent of geographical locations. The access of one computing 

node to other nodes may fail due to a single link failure. 

Distributed pieces of codes as well as the data at the computing nodes Transparency between 

data nodes at computing nodes do not fulfil for Big Data when distributed computing takes place 

using data sharing between local and remote. Following are the reasons for this: 

Å Distributed data storage systems do not use the concept of joins. 

Å Data need to be fault-tolerant and data stores should take into account the possibilities of 

network failure. When data need to be partitioned into data blocks and written at one  set of 

nodes, then those blocks need replication at multiple nodes. This takes care of possibilities of 

network faults. When a network fault occurs, then replicated node makes the data available. 

Big Data follows a theorem known as the CAP theorem. The CAP states that out of three 

properties (consistency, availability and partitions), two must at least be present for applications, 

services and processes. 

i. Big Data Store Model 
 

A model for Big Data store is as follows: 
 

Data store in file system consisting of data blocks (physical division of data). The data blocks 

are distributed across multiple nodes. Data nodes are at the racks of a cluster. Racks are scalable. 
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A Rack has multiple data nodes (data servers), and each cluster is arranged in a number of racks. 

 

Data Store model of files in data nodes in racks in the clusters Hadoop system uses the data store 

model in which storage is at clusters, racks, data nodes and data blocks. Data blocks replicate at 

the DataNodes such that a failure of link leads to access of the data block from the other nodes 

replicated at the same or other racks. 

ii. Big Data Programming Model 

 

Big Data programming model is that application in which application jobs and tasks (or sub- 

tasks) is scheduled on the same servers which store the data for processing. 

 Hadoop and its echo system 

Hadoop is a computing environment in which input data stores, processes and stores the results. 

The environment consists of clusters which distribute at the cloud or set of servers. Each cluster 

consists of a string of data files constituting data blocks. The toy named Hadoop consisted of a 

stuffed elephant. The Hadoop system cluster stuffs files in data blocks. The complete system 

consists of a scalable distributed set of clusters. 

Infrastructure consists of cloud for clusters. A cluster consists of sets of computers or PCs. The 

Hadoop platform provides a low cost Big Data platform, which is open source and uses cloud 

services. Tera Bytes of data processing takes just few minutes. Hadoop enables distributed 

processing of large datasets (above 10 million bytes) across clusters of computers using a 

programming model called MapReduce. The system characteristics are scalable, self- 

manageable, self-healing and distributed file system. 

Scalable means can be scaled up (enhanced) by adding storage and processing units as per the 

requirements. Self-manageable means creation of storage and processing resources which are 

used, scheduled and reduced or increased with the help of the system itself. Self-healing means 

that in case of faults, they are taken care of by the system itself. Self-healing enables functioning 

and resources availability. Software detect and handle failures at the task level. Software enable 

the service or task execution even in case of communication or node failure. 
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Figure 2.1 Core components of Hadoop 

The Hadoop core components of the framework  are: 

Hadoop Common - The common module contains the libraries and utilities that are required 

by the other modules of Hadoop. For example, Hadoop common provides various components 

and interfaces for distributed file system and general input/output. This includes serialization, 

Java RPC (Remote Procedure Call) and file-based data structures. 

Hadoop Distributed File System (HDFS) - A Java-based distributed file system which can 

store all kinds of data on the disks at the clusters. 

MapReduce vl - Software programming model in Hadoop 1 using Mapper and Reducer. The 

vl processes large sets of data in parallel and in batches. 

YARN - Software for managing resources for computing.  The user application tasks or sub- 

tasks run in parallel at the Hadoop, uses scheduling and handles the requests for the resources 

in distributed running of the tasks. 

MapReduce v2 - Hadoop 2 YARN -based system for parallel processing of large datasets and 

distributed processing of the application tasks. 

2.2.2 Features of Hadoop 
 
Hadoop features are as follows: 

 

1. Fault-efficient scalable, flexible and modular design which uses simple and modular 

programming model. The system provides servers at high scalability. The system is scalable by 

adding new nodes to handle larger data. Hadoop proves very helpful in storing, managing, 

processing and analyzing Big Data. 
 

2. Robust design of HDFS: Execution of Big Data applications continue even when an 

individual server or cluster fails. This is because of Hadoop provisions for backup (due to 

replications at least three times for each data block) and a data recovery mechanism. HDFS thus 

has high reliability. 

 

Hadoop Core Components 
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3. Store and process Big Data: Processes Big Data of 3V characteristics. 
 

4. Distributed clusters computing model with data locality: Processes Big Data at high speed 

as the application tasks and sub-tasks submit to the DataNodes. One can achieve more 

computing power by increasing the number of computing nodes. The processing splits across 

multiple DataNodes (servers), and thus fast processing and aggregated results. 

5. Hardware fault -tolerant: A fault does not affect data and application processing. If a node 

goes down, the other nodes take care of the residue. This is due to multiple copies of all data 

blocks which replicate automatically. Default is three copies of data blocks. 

6. Open-source framework: Open source access and cloud services enable large data store. 

Hadoop uses a cluster of multiple inexpensive servers or the cloud. 

7. Java and Linux  based: Hadoop uses Java interfaces. Hadoop base is Linux but has its own 

set of shell commands support. 

2.2.3. Hadoop Eco system Components 
 

The four layers in Figure 2.2 are as follows: 

 

(i) Distributed storage layer 

 

(ii)  Resource-manager layer for job or application sub-tasks scheduling and execution 

 

(iii)  Processing-framework layer, consisting of Mapper and Reducer for the MapReduce 

process-flow. 

(iv) APis at application support layer (applications such as Hive and Pig). The codes 

communicate and run using MapReduce or YARN at processing framework layer. Reducer 

output communicate to APis (Figure 2.2).
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AVRO enables data serialization between the layers. Zookeeper enables coordination among 

layer components. 

The holistic view of Hadoop architecture provides an idea of implementation of Hadoop 

components of the ecosystem. Client hosts run applications using Hadoop ecosystem projects, 

such as Pig, Hive and Mahout. 

 HADOOP DISTRIBUTED  FILE  SYSTEM 

HDFS is a core component of Hadoop. HDFS is designed to run on a cluster of computers and 

servers at cloud-based utility  services. 

HDFS stores Big Data which may range from GBs (1 GB= 230 B) to PBs (1 PB= 
 

1015 B, nearly the 250 B). HDFS  stores the  data in a distributed manner in order to compute 

fast. The distributed data store in HDFS stores data in any format regardless of schema. 

HDFS Storage 
 

Hadoop data store concept implies storing the data at a number of dusters. Each cluster has a 

number of data stores,  called racks. Each rack stores a number of Data Nodes. Each DataNode 

has a large number of data blocks. The racks distribute across a cluster. The nodes have 

processing and storage capabilities. The nodes have the data in data blocks to run the application 

tasks. The data blocks replicate by default at least on three DataNodes in same or remote nodes.



 

 

Data at the stores enable running the distributed applications including analytics, data mining, 

OLAP using the clusters. A file, containing the data divides into data blocks. A  data block default 

size is 64 MBs 

Hadoop HDFS features are as follows 

 

i. Create, append, delete, rename and attribute modification functions 
 

ii.  Content of individual file cannot be modified or replaced but appended with new data at 
 

 

Figure 2.3 A Hadoop cluster example, 

 

 

 
Consider a data storage for University students. Each student data, stuData which is in a file of 

size less than 64 MB (1 MB= 220 B). A data block stores the full file data for a student of 

stuData_idN, whereN = 1 to 500. 

i. How the files of each student will be distributed at a Hadoop cluster? How many student 

data can be stored at one cluster? Assume that each rack has two DataNodes for processing eac



 

 

of 64 GB  (1 GB= 230 B) memory. Assume that cluster consists of 120 racks, and thus 240 

DataNodes. 

ii.  What is the total memory capacity of the cluster in TB ((1 TB= 240 B) and DataNodes 

in each rack? 

iii.  Show the distributed blocks for students with ID= 96 and 1025. Assume default 

replication in the DataNodes = 3. 

iv. What shall be the changes when a stuData file sizes 128 MB? 

 
SOLUTION 

i. Data block default size is 64 MB. Each students file size is less than 64MB.  Therefore, 

for each student file one data block suffices. A data block is in a DataNode. Assume, for 

simplicity, each rack has two nodes each of memory capacity = 64 GB. Each node can thus store 

64 GB/64MB = 1024 data blocks = 1024 student files. Each rack can thus store 2 x 64 GB/64MB 

= 2048 data blocks = 2048 student files. Each data block default replicates three times in the 

DataNodes. Therefore, the number of students whose data can be stored in the cluster = number 

of racks multiplied by number of files divided by 3 = 120 x 2048/3 = 81920. Therefore, the 

maximum number of 81920 stuData_IDN files can be distributed per cluster, with N = 1 to 

81920. 

ii.  Total memory capacity of the cluster = 120 x 128 MB = 15360 GB = 15 TB. Total 

memory capacity of each DataNode in each rack= 1024 x 64 MB= 64 GB. 

iii.  Figure 2.3 shows a Hadoop cluster example, and the replication of data blocks in racks 

for two students of IDs 96 and 1025. Each stuData file stores at two data blocks, of capacity 

64 MB each. 

iv. Changes will  be that each node will  have half the number of data blocks. 

 

Hadoop Physical organization 
 

Figure 2.4 shows the client, master NameNode, primary and secondary MasterNodes and slave 

nodes in the Hadoop physical architecture. Clients as the users run the application with the help 

of Hadoop ecosystem projects. For example, Hive, Mahout and Pig are the ecosystem's projects. 

They are not required to be present at the Hadoop cluster. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

to medium 

balance the 

load. The secondary NameNode provides NameNode management services and Zookeeper is 

used by HBase for metadata storage. 

The MasterNode fundamentally plays the role of a coordinator. The MasterNode receives client 

connections, maintains the description of the global file system namespace, and the allocation 

of file blocks. It also monitors the state of the system in order to detect any failure. The Masters 

consists of three components NameNode, Secondary NameNode and JobTracker.  The 

NameNode stores all the file system related information such as: 

Å The file section is stored in which part of the cluster 

Å Last access time for the files 

Å User permissions like which user has access to the file. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 2.4 The client, master NameNode, MasterNodes and slave nodes 

A single MasterNode provides HDFS, MapReduce and Hbase using threads in small 

sized clusters. When the cluster size is large, multiple servers are used, such as to 



 

 

availability 

2.3.1.2 HDFS commands 

Secondary NameNode  is  an  alternate  for  NameNode.  Secondary  node  keeps  a  copy  of 

NameNode meta data. Thus, stored meta data can be rebuilt easily, in case ofNameNode failure. 

TheJobTracker coordinates the parallel processing of data. 

Hadoop 2 

Å Single Name  Node failure in Hadoop 1 is an operational limitation. 

Å Scaling up was restricted to scale beyond a few thousands of DataNodes and number 
of Clusters. 

Å Hadoop 2  provides  the  multiple  NameNodes  which  enables  higher  resources 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 MAPREDUCE FRAMEWORK  AND PROGRAMMING  MODEL  
 

Mapper means software for doing the assigned task after organizing the data blocks imported 

using the keys. A key specifies in a command line of Mapper. The command maps the key to 

the data, which an application uses. 

Reducer means software for reducing the mapped data by using the aggregation, query or user- 

specified function. The reducer provides a concise cohesive response for the application. 

Aggregation function means the function that groups the values of multiple rows together to 
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result a single value of more significant meaning or measurement. For example, function such 

as count, sum, maximum, minimum, deviation and standard deviation. 

Querying function means a function that finds the desired values. For example, function for 

finding a best student of a class who has shown the best performance in examination. 

MapReduce allows writing applications to process reliably the huge amounts of  data,  in 

parallel, on large clusters of servers. The cluster size does not limit as such to process in parallel. 

The parallel programs of MapReduce are useful for performing large scale data analysis using 

multiple machines in the cluster. 

Features o fMapReduce framework are as follows: 

 

Å Provides automatic parallelization and distribution of computation based on several 

processors 

Å Processes data stored on distributed clusters of DataNodes and racks 

Å Allows processing large amount of data in parallel 

Å Provides scalability for usages of large number of servers 

Å Provides Map Reduce batch-oriented programming model in Hadoop version 1 

Å Provides additional processing modes in Hadoop 2 YARN-based system and enables 

required parallel processing. For example, for queries, graph databases, streaming 

data, messages, real-time OLAP and ad hoc analytics with Big Data 3V 

characteristics. 

 HADOOP YARN 

Å YARN is a resource a management platform. It manages the computer resources. 

Å YARN manages the schedules for running the sub tasks. Each sub tasks uses the 

resources in the allotted interval time. 

Å YARN separates the resources management and processing components. 

Å It stands for YET ANOTHER RESOURCE NEGOTIATOR , it manages and allocates 

resources for the application sub tasks and submit the resources for them in the Hadoop 

system. 
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Hadoop 2 Execution Model 

The figure shows the YARN components-Client, Resource Manager (RM), Node  Manager 

(NM), Application Master (AM)  and Containers. 

Figure 2.5 also illustrates YARN components namely, Client, Resource Manager (RM), Node 

Manager (RM), Application Master (AM)  and Containers. 

List of actions of YARN resource allocation and scheduling functions is as follows: 
 

A MasterNode has two components: (i) Job History Server and (ii)  Resource Manager(RM). 

 

A Client Node submits the request of an application to the RM. The RM is the master. One RM 

exists per cluster. The RM keeps information of all the slave NMs. Information is about the 

location (Rack Awareness) and the number of resources (data blocks and  servers)  they have. 

The RM also renders the  Resource  Scheduler service that decides how to assign the resources. 

It, therefore, performs resource management as well as scheduling. 

Multiple NMs are at a cluster. An NM creates an AM instance (AMI) and starts up. The AMI 

initializes itself and registers with the RM. Multiple AMis can be created in an AM. 

The AMI  performs role of an Application Manager (ApplM), that estimates the resources 

requirement for running an application program or sub- task. The ApplMs send their requests 



 

 

for the necessary resources to the RM. Each NM includes several containers for uses by the 

subtasks of the application. 

NM is a slave of the infrastructure. It signals whenever it initializes. All  active NMs send the 

controlling signal periodically to the RM signaling their presence. 

 HADOOP ECOSYSTEM TOOLS 
 

ZooKeeper- 

Coordination 

service 

 

Provisions high-performance coordination service for distributed 

running of applications and tasks 

Avro-Data 

serialization 

and transfer 

utility  

 
Provisions data serialization during data transfer between application 

and processing layers 

 

Oozie Provides a way to package and bundles multiple coordinator and 

workflow jobs and manage the lifecycle of those jobs 

Sqoop 

(SQL-to- 

Hadoop)-A 

data-transfer 

software 

 

Provisions for data-transfer between data stores such as relational DBs 

and Hadoop 

Flume - Large 

data transfer 

utility  

Provisions for reliable data transfer and provides for recovery in case of 

failure. Transfers large amount of data in applications, such as related to 

social-media messages 

Ambari-A 

web-based tool 
Provisions, monitors, manages, and viewing of functioning of the 

cluster, MapReduce, Hive and Pig APis 

Chukwa-A 

data collection 

system 

 

Provisions and manages data collection system for large and distributed 

systems 

HBase-A 

structured 

data store 

using database 

 
Provisions a scalable and structured database for large tables (Section 

2.6.3) 

Cassandra - A 

database 
Provisions scalable and fault-tolerant database for multiple masters 

(Section 3.7) 



 

 

 

Hive -A data 

warehouse 

system 

Provisions data aggregation, data-summarization, data warehouse 

infrastructure, ad hoc (unstructured) querying and SQL-like scripting 

language for query processing using HiveQL (Sections 2.6.4, 4.4 and 4.5) 

Pig-A high- 

level dataflow 
language 

 

Provisions dataflow (DF) functionality and the execution framework for 

parallel computations 

Mahout-A Provisions scalable machine learning and library functions for data 
mining and analytics 



 

 

 



 

 

 



 

 

 



 

 

 



 

 

 



 

 

 



 

 

 



 

 

 



 

 

 



 

 

 



 

 

 

 

 

 
In  This  Chapter:  

Module 2 

1. Essential Hadoop Tools 

The Pig scripting  tool  is introduced  as a way to quickly  examine data both locally and on a Hadoop 
cluster. 

The Hive SQL-like query tool  is explained using two examples. 

The Sqoop RDBMS tool  is used to import  and export data from  MySQL to/from  HDFS. 

The Flume streaming data transport  utility  is configured to capture weblog data into  HDFS. 

The Oozie workflow  manager is used to run  basic and complex Hadoop workflows.  

The distributed  HBase database is used to store and access data on a Hadoop cluster. 

 
USING  APACHE  PIG  

 
 

Pig  Example  Walk -Through  
Table 7.1 Apache  Pig  Usage Modes  

In this simple example, Pig is used The following example assumes the user is hdfs, but any 

valid user with access to HDFS can run the example. 

To begin the example, copy the passwd file to a working directory for local Pig operation: 

$ cp /etc/passwd . 

 

Next, copy the data file into HDFS for Hadoop MapReduce operation: 
 

$ hdfs dfs -put passwd passwd 

 

You can confirm the file is in HDFS by entering the following command: 
hdfs dfs -ls passwd 

-rw-r--r--  2 hdfs hdfs 2526 2015-03-17 11:08 passwd 

In the following example of local Pig operation, all processing is done on the local machine 

(Hadoop is not used). First, the interactive command line is started: 

Apache Pig is a high-level language that enables programmers to write complex MapReduce 

transformations using a simple scripting language. Pig Latin (the actual language) defines a 

set of transformations on a data set such as aggregate, join, and sort. 

Apache Pig has several usage modes. 

Å The first is a local mode in which all processing is done on the local machine. 

Å The non-local (cluster) modes are MapReduce and Tez. These modes execute the job 

on the cluster using either the MapReduce engine or the optimized Tez engine. 

There are also interactive and batch modes available; they enable Pig applications to be 

developed locally in interactive modes, using small amounts of data, and then run at scale on 

the cluster in a production mode. The modes are summarized in Table 7.1. 



 

 

 

$ pig -x local 

 
If Pig starts correctly, you will see a grunt> prompt. Next, enter the following commands to 

load the passwd file and then grab the user name and dump it to the terminal. Note that Pig 

commands must end with a semicolon (;). 

grunt> A = load 'passwd' using PigStorage(':'); 

grunt> B = foreach A generate $0 as id; 

grunt> dump B; 
 

The processing will start and a list of user names will be printed to the screen. To exit the 

interactive session, enter the command quit. 

$ grunt> quit 

 

To use Hadoop MapReduce, start Pig as follows (or just enter pig): 

$ pig -x mapreduce 

 

The same sequence of commands can be entered at the grunt> prompt. You may wish to 

change the $0 argument to pull out other items in the passwd file. Also, because we are 

running this application under Hadoop, make sure the file is placed in HDFS. 

If  you are using the Hortonworks HDP distribution with tez installed, the tez engine can be 

used as follows: 

$ pig -x tez 

 

Pig can also be run from a script. This script, which is repeated here, is designed to do the 

same things as the interactive version: 

/*  id.pig */  

A = load 'passwd' using PigStorage(':'); -- load the passwd file 

B = foreach A generate $0 as id; -- extract the user IDs 

dump B; 

store B into 'id.out'; -- write the results to a directory name id.out 
 

Comments are delineated by /* */ and -- at the end of a line. First, ensure that the id.out 

directory is not in your local directory, and then start Pig with the script on the command line: 

$ /bin/rm -r id.out/ 

$ pig -x local id.pig 

 

If the script worked correctly, you should see at least one data file with the results and a zero- 

length file with the name _SUCCESS. To run the MapReduce version, use the same 

procedure; the only difference is that now all reading and writing takes place in HDFS. 

$ hdfs dfs -rm -r id.out 

$ pig id.pig 

USING APACHE HIVE  

Apache Hive is a data warehouse infrastructure built on top of Hadoop for providing data 

summarization, ad hoc queries, and the analysis of large data sets using a SQL-like language 

called HiveQL. Hive offers the following features: 

Tools to enable easy data extraction, transformation, and loading (ETL) 

A mechanism to impose structure on a variety of data formats 



 

 

 

Access to files stored either directly in HDFS or in other data storage systems such as 

HBase 

Query execution via MapReduce and Tez (optimized MapReduce) 

Hive  Example  Walk -Through  

To start Hive, simply enter the hive command. If Hive starts correctly, you should get a hive> 

prompt. 

$ hive 

(some messages may show up here) 

hive> 
 

As a simple test, create and drop a table. Note that Hive commands must end with a 

semicolon (;). 

hive> CREATE TABLE  pokes (foo INT,  bar STRING);  

OK 

Time taken: 1.705 seconds 

hive> SHOW TABLES; 

OK 

pokes 

Time taken: 0.174 seconds, Fetched: 1 row(s) 

hive> DROP TABLE pokes; 

OK 

Time taken: 4.038 seconds 
 

A more detailed example can be developed using a web server log file to summarize message 

types. First, create a table using the following command: 

hive> CREATE TABLE  logs(t1 string, t2 string, t3 string, t4 string, t5 string, t6 string, t7 string) ROW 

FORMAT  DELIMITED  FIELDS TERMINATED BY  '  ';  

OK 

Time taken: 0.129 seconds 

 

Next, load the dataðin this case, from the sample.log file. Note that the file is found in the 

local directory and not in HDFS. 

hive> LOAD  DATA  LOCAL  INPATH  'sample.log' OVERWRITE  INTO  TABLE  logs; 

Loading data to table default.logs 

Table default.logs stats: [numFiles=1, numRows=0, totalSize=99271, rawDataSize=0] 

OK 

Time taken: 0.953 seconds 
 

Finally, apply the select step to the file. Note that this invokes a Hadoop MapReduce 

operation. The results appear at the end   of the   output (e.g.,   totals for the message 

types DEBUG, ERROR, and so on). 

hive> SELECT t4 AS sev, COUNT(*)  AS cnt FROM logs WHERE t4 LIKE  '[%'  GROUP BY t4; 

Query ID = hdfs_20150327130000_d1e1a265-a5d7-4ed8-b785-2c6569791368 

Total jobs = 1 

Launching Job 1 out of 1 

Number of reduce tasks not specified. Estimated from input data size: 1 

In order to change the average load for a reducer (in bytes): 

set hive.exec.reducers.bytes.per.reducer=<number> 

In order to limit  the maximum number of reducers: 



 

 

 

set hive.exec.reducers.max=<number> 

In order to set a constant number of reducers: 

set mapreduce.job.reduces=<number> 

Starting Job = job_1427397392757_0001, Tracking URL = http://norbert:8088/proxy/ 

application_1427397392757_0001/ 

Kill Command = /opt/hadoop-2.6.0/bin/hadoop job -kill job_1427397392757_0001 

Hadoop job information for Stage-1: number of mappers: 1; number of reducers: 1 

2015-03-27 13:00:17,399 Stage-1 map = 0%, reduce = 0% 

2015-03-27 13:00:26,100 Stage-1 map = 100%, reduce = 0%, Cumulative CPU 2.14 sec 

2015-03-27 13:00:34,979 Stage-1 map = 100%, reduce = 100%, Cumulative CPU 4.07 sec 

MapReduce Total cumulative CPU time: 4 seconds 70 msec 

Ended Job = job_1427397392757_0001 

MapReduce Jobs Launched: 

Stage-Stage-1: Map: 1 Reduce: 1 Cumulative CPU: 4.07 sec HDFS Read: 106384 

HDFS Write: 63 SUCCESS 

Total MapReduce CPU Time Spent: 4 seconds 70 msec 

OK 

[DEBUG] 434 

[ERROR] 3 

[FATAL]  1 

[INFO] 96 

[TRACE] 816 

[WARN]  4 

Time taken: 32.624 seconds, Fetched: 6 row(s) 
 

To exit Hive, simply type exit; 

hive> exit; 

 
A More  Advanced  Hive  Example  

In this example, 100,000 records will  be transformed from userid, movieid, rating, unixtime 

to userid, movieid, rating, and weekday using Apache Hive and a Python program (i.e., the 

UNIX time notation will  be transformed to the day of the week). The first step is to download 

and extract the data: 

$ wget http://files.grouplens.org/datasets/movielens/ml-100k.zip 

$ unzip ml-100k.zip 

$ cd ml-100k 
 

Before we use Hive, we will  create a short Python program called weekday_mapper.py with 

following contents: 

import sys 

import  datetime 

 

for  line in sys.stdin: 

line = line.strip()  

userid, movieid, rating, unixtime = line.split(' \t')  

weekday   = datetime.datetime.fromtimestamp(float(unixtime)).isoweekday() 

print  ' \t'.join([userid,  movieid, rating, str(weekday)])LOAD DATA  LOCAL  INPATH  './u.data' 

OVERWRITE  INTO TABLE  u_data; 

Next, start Hive and create the data table (u_data) by entering the following at the hive> 

prompt: 

CREATE TABLE  u_data ( 

userid INT,  

movieid INT,  

http://files.grouplens.org/datasets/movielens/ml-100k.zip


 

 

 

rating INT,  

unixtime STRING) 

ROW FORMAT DELIMITED  

FIELDS TERMINATED  BY ' \t'  

STORED AS TEXTFILE;  

Load the movie data into the table with the following command: 

hive> LOAD  DATA  LOCAL  INPATH  './u.data' OVERWRITE  INTO  TABLE  u_data; 
 

The number of rows in the table can be reported by entering the following command: 

hive > SELECT COUNT(*)  FROM u_data; 
 

This command will  start a single MapReduce job and should finish with the following lines: 

... 

MapReduce Jobs Launched: 

Stage-Stage-1: Map: 1 Reduce: 1 Cumulative CPU: 2.26 sec HDFS Read: 1979380 

HDFS Write: 7 SUCCESS 

Total MapReduce CPU Time Spent: 2 seconds 260 msec 

OK 

100000 

Time taken: 28.366 seconds, Fetched: 1 row(s) 

Now that the table data are loaded, use the following command to make the new table 

(u_data_new): 

hive> CREATE TABLE  u_data_new ( 

userid INT,  

movieid INT, 

rating INT,  

weekday INT)  

ROW FORMAT DELIMITED  

FIELDS TERMINATED  BY ' \t';  

The next command adds the weekday_mapper.py to Hive resources: 

hive> add FILE  weekday_mapper.py; 
 

Once weekday_mapper.py is successfully loaded, we can enter the transformation query: 

hive> INSERT OVERWRITE  TABLE  u_data_new 

SELECT 

TRANSFORM (userid, movieid, rating, unixtime) 

USING 'python weekday_mapper.py' 

AS (userid, movieid, rating, weekday) 

FROM u_data; 

If  the transformation was successful, the following final portion of the output should be 

displayed: 

... 

Table default.u_data_new stats: [numFiles=1, numRows=100000, totalSize=1179173, 

rawDataSize=1079173] 

MapReduce Jobs Launched: 

Stage-Stage-1: Map: 1 Cumulative CPU: 3.44 sec HDFS Read: 1979380 HDFS Write: 

1179256 SUCCESS 

Total MapReduce CPU Time Spent: 3 seconds 440 msec 

OK 

Time taken: 24.06 seconds 



 

 

 

The final query will  sort and group the reviews by weekday: 

hive> SELECT weekday, COUNT(*)  FROM u_data_new GROUP BY weekday; 

 

Final output for the review counts by weekday should look like the following: 

... 

MapReduce Jobs Launched: 

Stage-Stage-1: Map: 1 Reduce: 1 Cumulative CPU: 2.39 sec HDFS Read: 1179386 

HDFS Write: 56 SUCCESS 

Total MapReduce CPU Time Spent: 2 seconds 390 msec 

OK 

1 13278 

2 14816 

3 15426 

4 13774 

5 17964 

6 12318 

7 12424 

Time taken: 22.645 seconds, Fetched: 7 row(s) 

As shown previously, you can remove the tables used in this example with the DROP 

TABLE command. In this case, we are also using the -e command-line option. Note that 

queries can be loaded from files using the -f option as well. 

$ hive -e 'drop  table u_data_new' 

$ hive -e 'drop  table u_data' 

 

USING APACHE SQOOP TO ACQUIRE  RELATIONAL  DATA  

Sqoop is a tool designed to transfer data between Hadoop and relational databases. You can 

use Sqoop to import data from a relational database management system (RDBMS) into the 

Hadoop Distributed File System (HDFS), transform the data in Hadoop, and then export the 

data back into an RDBMS. 

Sqoop can be used with any Java Database Connectivity (JDBC)ïcompliant database and has 

been tested on Microsoft SQL Server, PostgresSQL, MySQL, and Oracle. 

Apache  Sqoop  Import  and  Export  Methods  

Figure 7.1 describes the Sqoop data import (to HDFS) process. The data import is done in 

two steps. In the first step, shown in the figure, Sqoop examines the database to gather the 

necessary metadata for the data to be imported. The second step is a map-only (no reduce 

step) Hadoop job that Sqoop submits to the cluster. This job does the actual data transfer 

using the metadata captured in the previous step. Note that each node doing the import must 

have access to the database. 



 

 

 

 
Figure 7.1 Two-step Apache Sqoop data import  method (Adapted from  Apache Sqoop Documentation)  

 

The imported data are saved in an HDFS directory. Sqoop will use the database name for the 

directory, or the user can specify any alternative directory where the files should be 

populated. By default, these files contain comma-delimited fields, with new lines separating 

different records. You can easily override the format in which data are copied over by 

explicitly specifying the field separator and record terminator characters. Once placed in 

HDFS, the data are ready for processing. 

Data export from the cluster works in a similar fashion. The export is done in two steps, as 

shown in Figure 7.2. As in the import process, the first step is to examine the database for 

metadata. The export step again uses a map-only Hadoop job to write the data to the database. 

Sqoop divides the input data set into splits, then uses individual map tasks to push the splits 

to the database. Again, this process assumes the map tasks have access to the database. 



 

 

 

Figure 7.2 Two-step Sqoop data export method (Adapted from  Apache Sqoop Documentation)  
 

Apache  Sqoop  Version  Changes  

Sqoop Version 1 uses specialized connectors to access external systems. These connectors 

are often optimized for various RDBMSs or for systems that do not support JDBC. 

Connectors are plug-in components based on Sqoopôs extension framework and can be added 

to any existing Sqoop installation. Once a connector is installed, Sqoop can use it to 

 
 

Table 7.2 Apache Sqoop  Version  Comparison  
 

Sqoop  Example  Walk -Through  

The following simple example illustrates use of Sqoop 

 

Step  1: Load  Sample  MySQL  Database  

 
$ wget http://downloads.mysql.com/docs/world_innodb.sql.gz 

$ gunzip world_innodb.sql.gz 

 
Next, log into MySQL (assumes you have privileges to create a database) and import the 

desired database by following these steps: 

efficiently transfer data between Hadoop and the external store supported by the connector. 

By default, Sqoop version 1 includes connectors for popular databases such as MySQL, 

PostgreSQL, Oracle, SQL Server, and DB2. It also supports direct transfer to and from the 

RDBMS to HBase or Hive. 

In contrast, to streamline the Sqoop input methods, Sqoop version 2 no longer supports 

specialized connectors or direct import into HBase or Hive. All imports and exports are done 

through the JDBC interface. Table 7.2 summarizes the changes from version 1 to version 2. 

Due to these changes, any new development should be done with Sqoop version 2. 

http://downloads.mysql.com/docs/world_innodb.sql.gz


 

 

 

$ mysql -u root -p 

mysql> CREATE DATABASE world;  

mysql> USE world;  

mysql> SOURCE world_innodb.sql; 

mysql> SHOW TABLES;  

+- + 

| Tables_in_world | 

+- + 

| City | 

| Country | 

| CountryLanguage | 

+- + 

3 rows in set (0.01 sec) 

The following  MySQL command will  let you see the table details. 
 

Step 2: Add Sqoop User Permissions for  the Local Machine and Cluster 

In MySQL, add the following privileges for user sqoop to MySQL. Note that you must use 

both the local host name and the cluster subnet for Sqoop to work properly. Also, for the 

purposes of this example, the sqoop password is sqoop. 

mysql> GRANT ALL PRIVILEGES ON world.* To 'sqoop'@'limulus' IDENTIFIED BY 'sqoop' ; 

mysql> GRANT ALL  PRIVILEGES  ON world.*  To 'sqoop'@'10.0.0.%' IDENTIFIED  BY 'sqoop'; 

mysql> quit  
 

Next, log in as sqoop to test the permissions: 

 
$ mysql -u sqoop -p 

mysql> USE world;  

mysql> SHOW TABLES;  

+- + 

| Tables_in_world | 

+- + 

| City | 

| Country | 

| CountryLanguage | 

+- + 

3 rows in set (0.01 sec) 

mysql> quit 

Step 3: Import  Data Using Sqoop 

As a test, we can use Sqoop to list databases in MySQL. The results appear after the warnings 

at the end of the output. Note the use of local host name (limulus) in the JDBC statement. 

$ sqoop list-databases --connect jdbc:mysql://limulus/world  --username sqoop --password sqoop 

Warning: /usr/lib/sqoop/../accumulo does not exist! Accumulo imports will  fail. 

Please set $ACCUMULO_HOME to the root of your Accumulo installation. 

14/08/18 14:38:55 INFO sqoop.Sqoop: Running Sqoop version: 1.4.4.2.1.2.1-471 

14/08/18 14:38:55 WARN tool.BaseSqoopTool: Setting your password on the 

command-line is insecure. Consider using -P instead. 

14/08/18 14:38:55 INFO manager.MySQLManager: Preparing to use a MySQL streaming 

resultset. 

information_schema 



 

 

 

test 

world 

 

In a similar fashion, you can use Sqoop to connect to MySQL and list the tables in the world 

database: 

sqoop list-tables --connect jdbc:mysql://limulus/world  --username sqoop --password sqoop 

... 

14/08/18 14:39:43 INFO sqoop.Sqoop: Running Sqoop version: 1.4.4.2.1.2.1-471 

14/08/18 14:39:43 WARN tool.BaseSqoopTool: Setting your password on the 

command-line is insecure. Consider using -P instead. 

14/08/18 14:39:43 INFO manager.MySQLManager: Preparing to use a MySQL streaming 

resultset. 

City 

Country 

CountryLanguage 
 

To import data, we need to make a directory in HDFS: 

$ hdfs dfs -mkdir  sqoop-mysql-import  
 

The following command imports the Country table into HDFS. The option -table signifies the 

table to import, --target-dir is the directory created previously, and -m 1 tells Sqoop to use 

one map task to import the data. 

$ sqoop import --connect jdbc:mysql://limulus/world --username sqoop --password sqoop --table 

Country  -m 1 --target-dir  /user/hdfs/sqoop-mysql-import/country  

... 

14/08/18 16:47:15 INFO mapreduce.ImportJobBase: Transferred 30.752 KB in 

12.7348 seconds 

(2.4148 KB/sec) 

14/08/18 16:47:15 INFO mapreduce.ImportJobBase: Retrieved 239 records. 

The import can be confirmed by examining HDFS: 

$ hdfs dfs -ls sqoop-mysql-import/country  

Found 2 items 

-rw-r--r--  2 hdfs hdfs 0 2014-08-18 16:47 sqoop-mysql-import/ 

world/_SUCCESS 

-rw-r--r--  2 hdfs hdfs 31490 2014-08-18 16:47 sqoop-mysql-import/world/ 

part-m-00000 
 

The file can be viewed using the hdfs dfs -cat command: 

 
$ hdfs dfs -cat sqoop-mysql-import/country/part -m-00000 

ABW,Aruba,North America,Caribbean,193.0,null,103000,78.4,828.0,793.0,Aruba, 

Nonmetropolitan 

Territory of The Netherlands,Beatrix,129,AW 

... 

ZWE,Zimbabwe,Africa,Eastern Africa,390757.0,1980,11669000,37.8,5951.0,8670.0, 

Zimbabwe, 

Republic,Robert G. Mugabe,4068,ZW 

 
To make the Sqoop command more convenient, you can create an options file  and use it  on the 

command line. Such a file enables you to avoid having to rewrite the same options. For 



 

 

 

example, a file called world-options.txt with the following contents will  include 

the import command, --connect, --username, and --password options: 

 
import 

--connect 

jdbc:mysql://limulus/world 

--username 

sqoop 

--password 

sqoop 
 

The same import command can be performed with the following shorter line: 

$ sqoop --options-file world-options.txt --table City  -m 1 --target-dir  /user/hdfs/sqoop-mysql-import/city  

 

It is also possible to include an SQL Query in the import step. For example, suppose we want 

just cities in Canada: 

SELECT ID,Name from City  WHERE CountryCode='CAN'  

In such a case, we can include the --query option in the Sqoop import request. The -- 

query option also needs a variable called $CONDITIONS, which will be explained next. In 

the following query example, a single mapper task is designated with the -m 1 option: 

sqoop --options-file world-options.txt -m 1 --target-dir /user/hdfs/sqoop-mysql-import/canada-city -- 

query "SELECT  ID,Name from City  WHERE CountryCode='CAN'  AND \$CONDITIONS"  

Inspecting the results confirms that only cities from Canada have been imported: 

$ hdfs dfs -cat sqoop-mysql-import/canada-city/part -m-00000 

1810,MontrÄal 

1811,Calgary 

1812,Toronto 

... 

1856,Sudbury 

1857,Kelowna 

1858,Barrie 

Since there was only one mapper process, only one copy of the query needed to be run on the 

database. The results are also reported in a single file (part-m-0000). 

Multiple mappers can be used to process the query if  the --split-by option is used. The split- 

by option is used to parallelize the SQL query. Each parallel task runs a subset of the main 

query, with the results of each sub-query being partitioned by bounding conditions inferred 

by Sqoop. Your query must include the token $CONDITIONS that each Sqoop process will 

replace   with   a   unique   condition   expression    based    on    the --split-by option.    Note 

that $CONDITIONS is not an environment variable. Although Sqoop will  try to create 



 

 

 

balanced sub-queries based on the range of your primary key, it may be necessary to split on 

another column if  your primary key is not uniformly distributed. 

The following example illustrates the use of the --split-by option. First, remove the results of 

the previous query: 

$ hdfs dfs -rm -r  -skipTrash sqoop-mysql-import/canada-city 
 

Next, run the query using four mappers (-m 4), where we split by the ID number (--split-by 

ID): 

sqoop --options-file world -options.txt -m 4 --target-dir /user/hdfs/sqoop-mysql-import/canada-city -- 

query "SELECT  ID,Name from City  WHERE CountryCode='CAN'  AND \$CONDITIONS"  --split-by 

ID  
 

If  we look at the number of results files, we find four files corresponding to the four mappers 

we requested in the command: 

$ hdfs dfs -ls sqoop-mysql-import/canada-city 

Found 5 items 

-rw-r--r--  2 hdfs hdfs 0 2014-08-18 21:31 sqoop-mysql-import/ 

canada-city/_SUCCESS 

-rw-r--r--  2 hdfs hdfs 175 2014-08-18 21:31 sqoop-mysql-import/canada-city/ 

part-m-00000 

-rw-r--r--  2 hdfs hdfs 153 2014-08-18 21:31 sqoop-mysql-import/canada-city/ 

part-m-00001 

-rw-r--r--  2 hdfs hdfs 186 2014-08-18 21:31 sqoop-mysql-import/canada-city/ 

part-m-00002 

-rw-r--r--  2 hdfs hdfs 182 2014-08-18 21:31 sqoop-mysql-import/canada-city/ 

part-m-00003 

 
Step  4:  Export  Data  from  HDFS  to  MySQL  

Sqoop can also be used to export data from HDFS. The first step is to create tables for 

exported data. There are actually two tables needed for each exported table. The first table 

holds the exported data (CityExport), and the second is used for staging the exported data 

(CityExportStaging). Enter the following MySQL commands to create these tables: 

 
mysql> CREATE TABLE  'CityExport'  ( 

'ID'  int(11) NOT NULL  AUTO_INCREMENT,  

'Name' char(35) NOT NULL  DEFAULT  '',  

'CountryCode'  char(3) NOT NULL  DEFAULT  '',  

'District' char(20) NOT NULL DEFAULT '',  

'Population' int(11) NOT NULL DEFAULT '0',  

PRIMARY  KEY  ('ID'));  

mysql> CREATE TABLE  'CityExportStaging'  ( 

'ID'  int(11) NOT NULL  AUTO_INCREMENT,  

'Name' char(35) NOT NULL  DEFAULT  '',  

'CountryCode'  char(3) NOT NULL  DEFAULT  '',  

'District' char(20) NOT NULL DEFAULT '',  

'Population' int(11) NOT NULL DEFAULT '0',  

PRIMARY  KEY  ('ID'));  



 

 

 

Next, create a cities-export-options.txt file similar to the world-options.txt created previously, 

but use the export command instead of the import command. 

The following command will  export the cities data we previously imported back into 

MySQL: 

 
sqoop --options-file cities-export-options.txt --table CityExport  --staging-table CityExportStaging -- 

clear-staging-table -m 4 --export-dir  /user/hdfs/sqoop-mysql-import/city  
 

Finally, to make sure everything worked correctly, check the table in MySQL to see if  the 

cities are in the table: 

$ mysql> select *  from CityExport limit  10; 

+-   + +- + +- + 

| ID | Name | CountryCode | District | Population | 

+-   + +- + +- + 

| 1 | Kabul | AFG | Kabol |  1780000 | 

| 2 | Qandahar | AFG | Qandahar | 237500 | 

| 3 | Herat | AFG | Herat | 186800 | 

| 4 | Mazar-e-Sharif | AFG | Balkh | 127800 | 

| 5 | Amsterdam | NLD | Noord-Holland | 731200 | 

| 6 | Rotterdam | NLD | Zuid-Holland | 593321 | 

| 7 | Haag | NLD | Zuid-Holland  | 440900 | 

| 8 | Utrecht | NLD | Utrecht | 234323 | 

| 9 | Eindhoven | NLD | Noord-Brabant | 201843 | 

| 10 | Tilburg | NLD | Noord-Brabant | 193238 | 

+-   + +- + +- + 

10 rows in set (0.00 sec) 

 
Some  Handy  Cleanup  Commands  

If  you are not especially familiar with MySQL, the following commands may be helpful to 

clean up the examples. To remove the table in MySQL, enter the following command: 

mysql> drop table 'CityExportStaging';  
 

To remove the data in a table, enter this command: 

mysql> delete from CityExportStaging;  
 

To clean up imported files, enter this command: 

$ hdfs dfs -rm -r  -skipTrash sqoop-mysql-import/{country,city,  canada-city}  

 

USING APACHE FLUME  TO ACQUIRE  DATA  STREAMS 

Apache Flume is an independent agent designed to collect, transport, and store data into 

HDFS. Often data transport involves a number of Flume agents that may traverse a series of 

machines and locations. Flume is often used for log files, social media-generated data, email 

messages, and just about any continuous data source. As shown in Figure 7.3, a Flume agent 

is composed of three components. 



 

 

 

 
Figure 7.3 Flume agent with  source, channel, and sink (Adapted from  Apache Flume Documentation)  

 

Source. The source component receives data and sends it to a channel. It can send the data 

to more than one channel. The input data can be from a real-time source (e.g., weblog) or 

another Flume agent. 

Channel. A channel is a data queue that forwards the source data to the sink destination. It 

can be thought of as a buffer that manages input (source) and output (sink) flow rates. 

Sink. The sink delivers data to destination such as HDFS, a local file, or another Flume 

agent. 

A Flume agent must have all three of these components defined. A Flume agent can have 

several sources, channels, and sinks. Sources can write to multiple channels, but a sink can 

take data from only a single channel. Data written to a channel remain in the channel until a 

sink removes the data. By default, the data in a channel are kept in memory but may be 

optionally stored on disk to prevent data loss in the event of a network failure. 

As shown in Figure 7.4, Sqoop agents may be placed in a pipeline, possibly to traverse 

several machines or domains. This configuration is normally used when data are collected on 

one machine (e.g., a web server) and sent to another machine that has access to HDFS. 

 

 

 

 

 

 

 

 

 
Figure 7.4 Pipeline created by connecting Flume agents (Adapted from  Apache Flume Sqoop Documentation)  

 
In a Flume pipeline, the sink from one agent is connected to the source of another. The data 

transfer format normally used by Flume, which is called Apache Avro, provides several 

useful features. First, Avro is a data serialization/deserialization system that uses a compact 



 

 

 

binary format. The schema is sent as part of the data exchange and is defined using JSON 

(JavaScript Object Notation). Avro also uses remote procedure calls (RPCs) to send data. 

That is, an Avro sink will  contact an Avro source to send data. 

Another useful Flume configuration is shown in Figure 7.5. In this configuration, Flume is 

used to consolidate several data sources before committing them to HDFS. 

Figure 7.5 A Flume consolidation network  (Adapted from Apache Flume Documentation)  
 

There are many possible ways to construct Flume transport networks. In addition, other 

Flume features not described in depth here include plug-ins and interceptors that can enhance 

Flume pipelines. 

Flume  Example  Walk -Through  

Follow these steps to walk through a Flume example. 

Step  1: Download  and  Install  Apache  Flume  

Step 2:  Simple  Test  



 

 

In this example, a record from the weblogs from the local machine (Ambari output) will be 

placed into HDFS using Flume. This example is easily modified to use other weblogs from 

different machines. Two files are needed to configure Flume. (See the sidebar and Appendix 

A for file downloading instructions.) 

web- server - target - agent.conf ðthe target Flume agent that  writes the data to HDFS 

web- server - source - agent.conf ðthe source Flume agent that  captures the weblog data 

The weblog is also mirrored on the local file system by the agent that writes to HDFS. To run 

the example, create the directory as root: 

 

A simple test of Flume can be done on a single machine. To start the Flume agent, enter 

the flume-ng command shown here. This command uses the simple-example.conf file to 

configure the agent. 

$ flume-ng agent --conf conf --conf-file simple-example.conf --name simple_agent - 

Dflume.root.logger=INFO,console 

 

In another terminal window, use telnet to contact the agent: 

 
$ telnet localhost 44444 

Trying ::1... 

telnet: connect to address ::1: Connection refused 

Trying 127.0.0.1... 

Connected to localhost. 

Escape character is '^]'. 

testing 1 2 3 

OK 

If Flume is working correctly, the window where the Flume agent was started will show the 

testing message entered in the telnet window: 

Step  3:  Weblog  Example  

# mkdir  /var/log/flume-hdfs 

# chown hdfs:hadoop /var/log/flume-hdfs/ 
 

Next, as user hdfs, make a Flume data directory in HDFS: 

$ hdfs dfs -mkdir  /user/hdfs/flume-channel/ 
 

Now that you have created the data directories, you can start the Flume target agent (execute 

as user hdfs): 

$ flume-ng agent -c conf -f web-server-target-agent.conf -n collector 

 

This agent writes the data into HDFS and should be started before the source agent. (The 

source reads the weblogs.) This configuration enables automatic use of the Flume agent. 

The /etc/flume/conf/{flume.conf, flume-env.sh.template} files need to be configured for this 

purpose. For this example, the /etc/flume/conf/flume.conf file can be the same as the web- 

server-target.conf file (modified for your environment). 



 

 

 

In this example, the source agent is started as root, which will  start to feed the weblog data to 

the target agent. Alternatively, the source agent can be on another machine if  desired. 

# flume-ng agent -c conf -f web-server-source-agent.conf -n source_agent 

 
To see if  Flume is working correctly, check the local log by using the tail command. Also 

confirm that the flume-ng agents are not reporting any errors (the file name will  vary). 

$ tail  -f /var/log/flume-hdfs/1430164482581-1 
 

The contents of the local log under flume-hdfs should be identical to that written into HDFS. 

You can inspect this file by using the hdfs -tail command (the file name will vary). Note that 

while running Flume, the most recent file in HDFS may have the extension .tmp appended to 

it. The .tmpindicates that the file is still being written by Flume. The target agent can be 

configured to write the file   (and   start   another .tmp file)   by   setting   some   or   all   of 

the rollCount, rollSize, rollInterval, idleTimeout, and batchSize options in the configuration 

file. 

$ hdfs dfs -tail flume-channel/apache_access_combined/150427/FlumeData.1430164801381 
 

Both files should contain the same data. For instance, the preceding example had the 

following data in both files: 

10.0.0.1 - - [27/Apr/2015:16:04:21 -0400] "GET /ambarinagios/nagios/ 

nagios_alerts.php?q1=alerts&alert_type=all HTTP/1.1" 200 30801 "-" "Java/1.7.0_65" 

10.0.0.1 - - [27/Apr/2015:16:04:25 -0400] "POST /cgi-bin/rrd.py HTTP/1.1" 200 784 

"-" "Java/1.7.0_65" 

10.0.0.1 - - [27/Apr/2015:16:04:25 -0400] "POST /cgi-bin/rrd.py HTTP/1.1" 200 508 

"-" "Java/1.7.0_65" 
 

MANAGE  HADOOP  WORKFLOWS  WITH  APACHE  OOZIE  

Oozie is a workflow director system designed to run and manage multiple related Apache 

Hadoop jobs. For instance, complete data input and analysis may require several discrete 

Hadoop jobs to be run as a workflow in which the output of one job serves as the input for a 

successive job. Oozie is designed to construct and manage these workflows. Oozie is not a 

substitute for the YARN scheduler. That is, YARN manages resources for individual Hadoop 

jobs, and Oozie provides a way to connect and control Hadoop jobs on the cluster. 

Oozie workflow jobs are represented as directed acyclic graphs (DAGs) of actions. (DAGs 

are basically graphs that cannot have directed loops.) Three types of Oozie jobs are 

permitted: 



 

 

Bundleða higher-level Oozie abstraction that will  batch a set of coordinator jobs. 

Oozie is integrated with the rest of the Hadoop stack, supporting several types of Hadoop 

jobs out of the box (e.g., Java MapReduce, Streaming MapReduce, Pig, Hive, and Sqoop) as 

well as system-specific jobs (e.g., Java programs and shell scripts). Oozie also provides a CLI 

and a web UI for monitoring jobs. 

Figure 7.6 depicts a simple Oozie workflow. In this case, Oozie runs a basic MapReduce 

operation. If the application was successful, the job ends; if an error occurred, the job is 

killed. 

Oozie workflow definitions are written in hPDL (an XML  Process Definition Language). 

Such workflows contain several types of nodes: 

Control  flow nodes define the beginning and the end of a workflow. They include start, 

end, and optional fail nodes. 

 

Workflowða specified sequence of Hadoop jobs with outcome-based decision points and 

control dependency. Progress from one action to another cannot happen until the first action 

is complete. 

Coordinatorða scheduled workflow job that can run at various time intervals or when data 

become available. 

 

Figure 7.6 A simple Oozie DAG workflow  (Adapted from Apache Oozie Documentation) 

 

Action nodes are where the actual processing tasks are defined. When an action node 

finishes, the remote systems notify Oozie and the next node in the workflow is executed. 

Action nodes can also include HDFS commands. 



 

 

 

Fork/join nodes enable parallel execution of tasks in the workflow. The fork node enables 

two or more tasks to run at the same time. A join node represents a rendezvous point that 

must wait until all forked tasks complete. 

Control flow nodes enable decisions to be made about the previous task. Control decisions 

are based on the results of the previous action (e.g., file size or file existence). Decision nodes 

are essentially switch-case statements that use JSP EL (Java Server PagesðExpression 

 
 

Figure 7.7 A more complex Oozie DAG workflow  (Adapted from  Apache Oozie Documentation) 
 

Oozie  Example  Walk -Through  

 
Step  1: Download  Oozie  Examples  

The Oozie examples used in this section can be found on the book website (see Appendix A). 

They are also available as part of the oozie-client.noarch RPM in the Hortonworks HDP 2.x 

packages. For HDP 2.1, the following command can be used to extract the files into the 

working directory used for the demo: 

$ tar  xvzf /usr/share/doc/oozie-4.0.0.2.1.2.1/oozie-examples.tar.gz 

 
For HDP 2.2, the following  command will  extract the files: 

$ tar  xvzf /usr/hdp/2.2.4.2-2/oozie/doc/oozie-examples.tar.gz 

Language) that evaluate to either true or false. 
 
Figure 7.7 depicts a more complex workflow  that  uses all of these node types. 



 

 

This directory contains two files and a lib directory. The files are: 

The job.properties file defines parameters (e.g., path names, ports) for a job. This file may 

change per job. 

The workflow.xml file provides the actual workflow for the job. In this case, it is a simple 

MapReduce (pass/fail). This file usually stays the same between jobs. 

The job.properties file included in the examples requires a few edits to work properly. Using 

a text editor, change the following lines by adding the host name of the NameNode and 

ResourceManager (indicated by jobTracker in the file). 

As shown in Figure 7.6, this simple workflow runs an example MapReduce job and prints an 

error message if it fails. 

To   run   the   Oozie   MapReduce   example   job   from    the oozie-examples/apps/map- 

reduce directory, enter the following line: 

 

Once extracted, rename the examples directory to oozie-examples so that you will  not 

confuse it with the other examples directories. 

$ mv examples oozie-examples 

The examples must also be placed in HDFS. Enter the following command to move the 

example files into HDFS: 

$ hdfs dfs -put oozie-examples/ oozie-examples 

The Oozie shared library must be installed in HDFS. If  you are using the Ambari installation 

of HDP 2.x, this library is already found in HDFS: /user/oozie/share/lib. 

Step  2:  Run  the  Simple  MapReduce  Example  

Move to the simple MapReduce example directory:  

 
$ cd oozie-examples/apps/map-reduce/ 

 

$ oozie job -run -oozie http://limulus:11000/oozie -config job.properties 

When Oozie accepts the job, a job ID will  be printed: 

job: 0000001-150424174853048-oozie-oozi-W 

You will need to change the ñlimulusò host name to match the name of the node running your 

Oozie server. The job ID can be used to track and control job progress. 

To avoid having to provide the -oozie option with the Oozie URL every time you run 

the ooziecommand, set the OOZIE_URL environment variable as follows (using your Oozie 

server host name in place of ñlimulusò): 

$ export OOZIE_URL="http://limulus:11000/oozie"  



 

 

 

You can now run all subsequent Oozie commands without specifying the -oozie URL option. 

For instance, using the job ID, you can learn about a particular jobôs progress by issuing the 

following command: 

$ oozie job -info 0000001-150424174853048-oozie-oozi-W 

The resulting output (line length compressed) is shown in the following listing. Because this 

job is just a simple test, it may be complete by the time you issue the -info command. If it is 

not complete, its progress will  be indicated in the listing. 

Job ID : 0000001-150424174853048-oozie-oozi-W 

Workflow Name : map-reduce-wf 

App Path  : hdfs://limulus:8020/user/hdfs/examples/apps/map-reduce 

Status : SUCCEEDED 

Run 0 

User : hdfs 

Group : - 

Created : 2015-04-29 20:52 GMT 

Started : 2015-04-29 20:52 GMT 

Last Modified : 2015-04-29 20:53 GMT 

Ended : 2015-04-29 20:53 GMT 

CoordAction ID: - 

 
Actions 

   - 

ID Status Ext ID Ext Status Err Code 

  - 

0000001-150424174853048-oozie 

-oozi-W@:start: OK - OK - 

  - 

0000001-150424174853048-oozie 

-oozi-W@mr-node OK job_1429912013449_0006 SUCCEEDED - 

  - 

0000001-150424174853048-oozie 

-oozi-W@end OK - OK - 

  - 

The various steps shown in the output can be related directly to the workflow.xml mentioned 

previously. Note that the MapReduce job number is provided. This job will  also be listed in 

the ResourceManager web user interface. The application output is located in HDFS under 

the oozie-examples/output-data/map-reduce directory. 

Step  3:  Run  the  Oozie  Demo  Application  

A more sophisticated example can be found in the demo directory (oozie- 

examples/apps/demo). This workflow includes MapReduce, Pig, and file system tasks as well 

as fork, join, decision, action, start, stop, kill,  and end nodes. 

Move to the demo directory and edit the job.properties file as described previously. Entering 

the following command runs the workflow (assuming the OOZIE_URL environment variable 

has been set): 



 

 

Figure 7.8 shows the main Oozie console window. 

 

$ oozie job -run -config job.properties 

You can track the job using either the Oozie command-line interface or the Oozie web 

console. To start the web console from within Ambari, click on the Oozie service, and then 

click on the Quick Links pull-down menu and select Oozie Web UI. Alternatively, you can 

start the Oozie web UI by connecting to the Oozie server directly. For example, the following 

command will  bring up the Oozie UI (use your Oozie server host name in place of 

ñlimulusò): 

$ firefox  http://limulus:11000/oozie/ 

 

 

Figure 7.8 Oozie main console window 
 

Workflow jobs are listed in tabular form, with the most recent job appearing first. If  you click 

on a workflow, the Job Info window in Figure 7.9 will be displayed. The job progression 

results, similar to those printed by the Oozie command line, are shown in the Actions window 

at the bottom. 


