
Module2

1

MODULE 2: Lists

 Lists are used to store multiple items in a single variable.

 Eg: = ["apple", "banana", "cherry"]

List Datatypes

A list is a value that contains multiple values in an ordered sequence.

 A list value looks like this: ['cat', 'bat', 'rat', 'elephant'].

 A list begins with an opening square bracket and ends with a closing square

bracket .

 Values inside the list are also called items and are separated with commas.

 >>> [A,B,C]

 [A,B,C]

 >>> [‘Cat’,’dog’,rat,’bat’]

 [‘Cat’,’dog’,rat,’bat’]

 >>> Mypets = [‘Cat’,’Dog’.’bat’]

 >>>Mypets

 [‘Cat’,’Dog’.’bat’]

.

 The value [] is an empty list that contains no values, similar to '', the empty

string.

 Getting Individual Values in a List with Indexes

 Say you have the list ['cat', 'dog', 'bat'] stored in a variable named Mypets.

 The Python code Mypets[0] would evaluate to 'cat', and Mypets[1] would

evaluate to 'dog', and so on.


>>> Mypets = [‘Cat’,’Dog’.’bat’]

>>> Mypets[0]

Module2

2

Cat

Mypets[1]

Dog

 The first value in the list is at index 0, the second value is at index 1, and the

third value is at index 2, and so on.



 For example, type the following expressions into the interactive shell.

 Mypets = [‘Cat’,’Dog’.’bat’]
 >>> Mypets[0]

 Cat

Mypets[1]

Dog

>>> ‘hello’ + Mypets[0]

‘hello cat’

>>> ‘The’ + Mypets[0]+ ‘ate the’ + Mypets[2]+ ‘.’

The cat ate the bat.

Mypets[100]

Indexerror:list index out of range

 If we use an index that exceeds the number of values in the list value then,

python gives IndexError.

 Mypets[0.1]

TypeError

 Indexes can be only integer values, not floats. The following example will

cause a TypeError error:

 Lists can also contain other list values. The values in these lists of lists can

be accessed using multiple indexes.

 >>> Mypets = [‘Cat’,’Dog’.’bat’],[10,20,30,40,50]

 Mypets [0]

 [‘Cat’,’Dog’.’bat’]

 >>>Mypets [0][1]

 Dog

 Mypets[1][4]

 50

 The first index dictates which list value to use, and the second indicates the

value within the list value. Ex, Mypets[0][1] prints 'Dog', the second value

in the first list.

Module2

3

Negative Indexes

 We can also use negative integers for the index. The integer value -1 refers

to the last index in a list, the value -2 refers to the second-to-last index in a

list, and so on.

>>>Mypets = [‘Cat’,’Dog’,’bat’]
>>> Mypets [-1’]
‘Dog’
>>>Mypets [-2]
‘bat’
>>>’The’ + Mypets [-1]+ ‘is afraid of the’ + Mypets [-2]+ ‘.’
‘The Dog is afraid of the bat.’





Getting Sublists with Slices

 An index will get a single value from a list, a slice can get several values

from a list, in the form of a new list.

 A slice is typed between square brackets, like an index, but it has two

integers separated by a colon.

Difference between indexes and slices.



>>>Mypets = [‘Cat’,’Dog’,’bat’,’elephant’]


 Mypets[2] is a list with an index (one integer).

 Mypets [1:4] is a list with a slice (two integers).

 In a slice, the first integer is the index where the slice starts. The second

integer is the index where the slice ends (but will not include the value at the

second index).

>>>Mypets = [‘Cat’,’Dog’,’bat’,’elephant’]
>>>Mypets[0:4]

[‘Cat’,’Dog’,’bat’,’elephant’]

>>>Mypets[1:3]

Module2

4

[’Dog’,’bat’,’elephant’]

>>>Mypets[0:-1]

[‘Cat’,’Dog’,’bat’]

As a shortcut, we can leave out one or both of the indexes on either side of the

colon in the slice.

 Leaving out the first index is the same as using 0, or the beginning of the

list.

 Leaving out the second index is the same as using the length of the list,

which will slice to the end of the list.

 >>>Mypets=[‘Cat’,’Dog’,’bat’,’elephant’]

 >>>Mypets[:2]

 [‘cat’,’bat’]

 >>>Mypets[1:]

 [’Dog’,’bat’,’elephant’]

 >>>Mypets[:]

 [‘Cat’,’Dog’,’bat’,’elephant’]

Getting a List’s Length with len()

 The len() function will return the number of values that are in a list value

 >>>Mypets=[‘ [‘Cat’,’Dog’,’bat’,’elephant’]

 >>> Len(Mypets)
 4

Changing Values in a List with Indexes

We can also use an index of a list to change the value at that index. Ex: Mypets[1]

= 'Dog' means “Assign the value at index 1 in the list spam to the string 'cow'.”

>>>Mypets== [Cat’,Dog’bat’,’elephant’]

 >>>Mypets[1] = ‘cow’

 >>>Spam

 >>>Spam = [cat’,’cow’,’bat’,’elephant’]

Module2

5

List Concatenation and List Replication

 The + operator can combine two lists to create a new list value in the same

way it combines two strings into a new string value.

 The * operator can also be used with a list and an integer value to replicate

the list.

 >>> [1,2,3] + [‘A’,’B’,’C’]

 [1,2,3,’A’,’B’,’C’]

 >>>[‘X’,’Y’,’’Z]*3

 [‘X’,’Y’,’Z’, ‘X’,’Y’,’Z’, ‘X’,’Y’,’Z’]

 >>> NUM = [1,2,3]

 >>> NUM = NUM + [‘A’,’B’,’C’]

 >>> NUM

 [1,2,3,’A’,’B’,’C’]

Removing Values from Lists with del Statements

 The del statement will delete values at an index in a list.

 >>>Mypets== [Cat’,Dog’bat’,’elephant’]

 >>> del Mypets[2]

 >>> Mypets

 [Cat’,Dog’,’elephant’]

 The del statement can also be used to delete a variable After deleting if we

try to use the variable, we will get a NameError error because the variable no

longer exists.

 In practice, you almost never need to delete simple variables.

 The del statement is mostly used to delete values from lists.



Working with Lists

 When we first begin writing programs, it’s tempting to create many individual

variables to store a group of similar values.

Module2

6

Dogname1 = ‘pinki’

Dogname2 = ‘rocky’

Dogname3 = ‘raani’

Dogname4 = ‘rooby’

Dogname5 = ‘aura’

Dogname6 = ‘oreo’

 Which is bad way to write code because it leads to have a duplicate code in

the program.

Print (‘Enter the name of Dog 1:’)

Dogname1 = input()

Print (‘Enter the name of Dog 1:’)

Dogname2 = input()

Print (‘Enter the name of Dog 1:’)

Dogname3 = input()

Print (‘Enter the name of Dog 1:’)

Dogname4 = input()

Print (‘Enter the name of Dog 1:’)

Dogname5 = input()

Print (‘Enter the name of Dog 1:’)

Dogname6 = input()

Print (‘Dognames are:’)

Print(Dogname1 +’’+ Dogname2 +’’+ Dogname3 +’’+ Dogname4 +’’+

Dogname5 +’’+ Dogname6)



Instead of using multiple, repetitive variables, we can use a single variable that

contains a list value.

 For Ex: The following program uses a single list and it can store any number

of dogs that the user types in.



Program:
 Dognames = []

 While True:

 Print(‘Enter the name of Dog’ + str(len(Dopgnames)+1’(or enter nothing to stop.):’)

 Name = input()

If name == ‘’:

Module2

7

break

Dognames = Dognames + [name] # list concantination

Print(‘The cat names are:’)

 For name in catnames:

 Print(‘’+name)

Output:

Enter the name of Dog1 (or enter nothing to stop.):

Pinki

Enter the name of Dog2 (or enter nothing to stop.):

rocky

Enter the name of Dog3 (or enter nothing to stop.):

raani

Enter the name of Dog4 (or enter nothing to stop.):

rooby

Enter the name of Dog5 (or enter nothing to stop.):

aura

Enter the name of Dog6 (or enter nothing to stop.):

Oreo

The cat names are:

 ‘pinki’

‘rocky’

 ‘raani’

 ‘rooby’

 ‘aura’

 ‘oreo’

Module2

8

Using for Loops with Lists

 A for loop repeats the code block once for each value in a list or list-like

value.



Eg Program

 Output:

 A common Python technique is to use range (len(someList)) with a for loop

to iterate over the indexes of a list.

 >>> supplies = [‘pens’,’Staples’,’flame-throwers’,’blinders’]

 for I in range(len(supplies)):

 print(‘index’ + str(i)+ ‘in supplies is:’+ supplies[i])

 index 0 in supplies is : pens

 index 1 in supplies is : Staplers

 index 2 in supplies is : flame-throwers

 index 3 in supplies is : blinders

 The code in the loop will access the index (as the variable i), the value at that

index (as supplies[i]) and range(len(supplies)) will iterate through all the

indexes of supplies, no matter how many items it contains.

Module2

9

The in and not in Operators

 We can determine whether a value is or isn’t in a list with the in and not in

operators.

 in and not in are used in expressions and connect two values: a value to look

for in a list and the list where it may be found and these expressions will

evaluate to a Boolean value

 The following program lets the user type in a pet name and then checks to

see whether the name is in a list of pets

 Eg Program

>>>Mypets== [Cat’,Dog’bat’,’elephant’]

Print(‘Enter a pet name:’)

Name = input()

If name not in Mypets:

 Print (‘I do not have a pet names’+ name)

Else:

 Print(name + ‘is my pet.’)

Output

Enter a petname:

Rat

I do not have a pet named Rat

Module2

10

The Multiple Assignment Trick

 The multiple assignment trick is a shortcut that lets you assign multiple

variables with the values in a list in one line of code.

 Instead of left-side program we could type the right-side program to

assignment multiple variables but the number of variables and the length of

the list must be exactly equal, or Python will give you a ValueError:

Augmented Assignment Operators

 When assigning a value to a variable, we will frequently use the variable

itself

Module2

11

 The Augmented Assignment Operators are listed in the below table:

 The += operator can also do string and list concatenation, and the *=

operator can do string and list replication.

Methods

A Method is same as a function, except it is “called on” a value.

 The method part comes after the value, separated by a period.

 Each data type has its own set of methods.

 The list data type has several useful methods for finding, adding, removing,

and manipulating values in a list

Module2

12

Finding a Value in a List with the index() Method

 List values have an index() method that can be passed a value, and if that

value exists in the list, the index of the value is returned. If the value isn’t in

the list, then Python produces a ValueError error.

 When there are duplicates of the value in the list, the index of its first

appearance is returned.

Module2

13

Adding Values to Lists with the append() and

insert() Methods

To add new values to a list, use the append() and insert() methods.

 The append() method call adds the argument to the end of the list

 The insert() method can insert a value at any index in the list. The first

argument to insert() is the index for the new value, and the second argument

is the new value to be inserted.

Methods belong to a single data type.

 The append() and insert() methods are list methods and can be called only on

list values, not on other values such as strings or integers.





Module2

14

Removing Values from Lists with remove()

 The remove() method is passed the value to be removed from the list it is

called on.

 Attempting to delete a value that does not exist in the list will result in a

ValueError error

 If the value appears multiple times in the list, only the first instance of the

value will be removed

 The del statement is good to use when you know the index of the value you

want to remove from the list. The remove() method is good when you know

the value you want to remove from the list.

Module2

15

Sorting the Values in a List with the sort() Method

 Lists of number values or lists of strings can be sorted with the sort()

method.

 You can also pass True for the reverse keyword argument to have sort() sort

the values in reverse order

There are three things you should note about the sort() method.

 First, the sort() method sorts the list in place; don’t try to return value by

writing code like spam = spam.sort().

 Second, we cannot sort lists that have both number values and string values

in them

 Third, sort() uses “ASCIIbetical order(upper case)” rather than actual

alphabetical order(lower case) for sorting strings

Module2

16

 If we need to sort the values in regular alphabetical order, pass str.lower for

the key keyword argument in the sort() method call.

Example Program: Magic 8 Ball with a List

 We can write a much more elegant version of the Magic 8 Ball program.

Instead of several lines of nearly identical elif statements, we can create a

single list.

Module2

17

 The expression you use as the index into messages: random .randint(0,

len(messages) - 1). This produces a random number to use for the index,

regardless of the size of messages. That is, you’ll get a random number

between 0 and the value of len(messages) - 1.

Exceptions to Indentation Rules in Python

The amount of indentation for a line of code tells Python what block it is in.

 lists can actually span several lines in the source code file. The indentation

of these lines do not matter; Python knows that until it sees the ending

square bracket, the list is not finished.





 We can also split up a single instruction across multiple lines using the \ line

continuation character at the end.



















Module2

18



List-like Types: Strings and Tuples

Lists aren’t the only data types that represent ordered sequences of values.Ex, we

can also do these with strings: indexing; slicing; and using them with for loops,

with len(), and with the in and not in operators.



Mutable and Immutable Data Types

String

 However, a string is immutable: It cannot be changed. Trying to reassign a

single character in a string results in a TypeError error

Module2

19

 The proper way to “mutate” a string is to use slicing and concatenation to

build a new string by copying from parts of the old string.



 

 We used [0:7] and [8:12] to refer to the characters that we don’t wish to

replace. Notice that the original 'Zophie a cat' string is not modified because

strings are immutable.

List

 A list value is a mutable data type: It can have values added, removed, or

changed.

Module2

20

The Tuple Data Type

 The tuple data type is almost identical to the list data type, except in two

ways.

 First, tuples are typed with parentheses, (and), instead of square brackets, [

and].

 Second, benefit of using tuples instead of lists is that, because they are

immutable and their contents don’t change. Tuples cannot have their values

modified, appended, or removed.

Module2

21

 If you have only one value in your tuple, you can indicate this by placing a

trailing comma after the value inside the parentheses.

Converting Types with the list() and tuple() Functions

 The functions list() and tuple() will return list and tuple versions of the

values passed to them

 Converting a tuple to a list is handy if you need a mutable version of a tuple

value.

References

 As we’ve seen, variables store strings and integer values

Module2

22

 We assign 42 to the spam variable, and then we copy the value in spam and

assign it to the variable cheese. When we later change the value in spam to

100, this doesn’t affect the value in cheese. This is because spam and cheese

are different variables that store different values.

 But lists works differently. When we assign a list to a variable, we are

actually assigning a list reference to the variable. A reference is a value that

points to some bit of data, and a list reference is a value that points to a list.

 When we create the list ❶, we assign a reference to it in the spam variable.

But the next line copies only the list reference in spam to cheese, not the list

value itself. This means the values stored in spam and cheese now both refer

to the same list.

 There is only one underlying list because the list itself was never actually

copied. So when we modify the first element of cheese, we are modifying the

same list that spam refers to.

 List variables don’t actually contain lists—they contain references to lists

Passing References

 References are particularly important for understanding how arguments get

passed to functions.

 When a function is called, the values of the arguments are copied to the

parameter variables

Module2

23

Output

 When eggs() is called, a return value is not used to assign a new value to

spam.

 Even though spam and someParameter contain separate references, they

both refer to the same list. This is why the append('Hello') method call inside

the function affects the list even after the function call has returned.

The copy Module’s copy() and deepcopy() Functions

 If the function modifies the list or dictionary that is passed, we may not

want these changes in the original list or dictionary value.

 For this, Python provides a module named copy that provides both the

copy() and deepcopy() functions.

 copy(), can be used to make a duplicate copy of a mutable value like a list

or dictionary, not just a copy of a reference.

 Now the spam and cheese variables refer to separate lists, which is why

only the list in cheese is modified when you assign 42 at index 1.

 The reference ID numbers are no longer the same for both variables

because the variables refer to independent lists.

 If the list you need to copy contains lists, then use the copy. deepcopy()

function instead of copy.copy(). The deepcopy() function will copy these

inner lists as well.









Module2

24

CHAPTER2: DICTIONARIES AND

STRUCTURING DATA

The Dictionary Data Type

 A dictionary is a collection of many values. Indexes for dictionaries can

use many different data types, not just integers. Indexes for dictionaries

are called keys, and a key with its associated value is called a key-value

pair.

 A dictionary is typed with braces, {}.

 This assigns a dictionary to the myCat variable. This dictionary’s keys are 'size', 'color', and

'disposition'. The values for these keys are 'fat', 'gray', and 'loud', respectively. You can access

these values through their keys

 Dictionaries can still use integer values as keys, but they do not have to start at 0 and can be

any number.

Module2

25

Dictionaries vs. Lists

 Unlike lists, items in dictionaries are unordered.

 The first item in a list named spam would be spam[0]. But there is no “first”

item in a dictionary. While the order of items matters for determining

whether two lists are the same, it does not matter in what order the key-value

pairs are typed in a dictionary.

 Trying to access a key that does not exist in a dictionary will result in a

KeyError error message, much like a list’s “out-of-range” IndexError error

message.

 We can have arbitrary values for the keys that allows us to organize our data

in powerful ways.

Module2

26

 Ex: we want to store data about our friends’ birthdays. We can use

a dictionary with the names as keys and the birthdays as values

output

 We create an initial dictionary and store it in birthdays 1.

 We can see if the entered name exists as a key in the dictionary with the in

keyword 2.

 If the name is in the dictionary, we access the associated value using square

brackets 3; if not, we can add it using the same square bracket syntax

combined with the assignment operator 4.

Module2

27

The keys(), values(), and items() Methods

 There are three dictionary methods that will return list-like values of the

dictionary’s keys, values, or both keys and values: keys(), values(), and

items().

 Data types (dict_keys, dict_values, and dict_items, respectively) can be used

in for loops

 A for loop can iterate over the keys, values, or key-value pairs in a dictionary

by using keys(), values(), and items() methods.

 The values in the dict_items value returned by the items() method are tuples

of the key and value.

If we want a true list from one of these methods, pass its list-like return value to

the list() function

Module2

28

 The list(spam.keys()) line takes the dict_keys value returned from keys() and

passes it to list(), which then returns a list value of ['color', 'age'].

 We can also use the multiple assignment trick in a for loop to assign the key

and value to separate variables

Module2

29

Checking Whether a Key or Value Exists in a Dictionary

 We can use the in and not in operators to see whether a certain key or value

exists in a dictionary

The get() Method

 Dictionaries have a get() method that takes two arguments:

 The key of the value to retrieve and

 A fallback value to return if that key does not exist

Module2

30

The setdefault() Method

To set a value in a dictionary for a certain key only if that key does not already

have a value

 The setdefault() method offers a way to do this in one line of code.

 Setdeafault() takes 2 arguments:

 The first argument is the key to check for, and

 The second argument is the value to set at that key if the key does not exist.

If the key does exist, the setdefault() method returns the key’s value.

 The first time setdefault() is called, the dictionary in spam changes to

{'color': 'black', 'age': 5, 'name': 'Pooka'}. The method returns the value

'black' because this is now the value set for the key 'color'. When

spam.setdefault('color', 'white') is called next, the value for that key is not

changed to 'white' because spam already has a key named 'color'.

Module2

31

Ex: program that counts the number of occurrences of each letter in a string.

 The program loops over each character in the message variable’s string,

counting how often each character appears.

 The setdefault() method call ensures that the key is in the count dictionary

(with a default value of 0), so the program doesn’t throw a KeyError error

when count[character] = count[character] + 1 is executed.

Output:

Pretty Printing

 Importing pprint module will provide access to the pprint() and pformat()

functions that will “pretty print” a dictionary’s values.

Module2

32

 This is helpful when we want a cleaner display of the items in a dictionary

than what print() provides and also it is helpful when the dictionary itself

contains nested lists or dictionaries..

Program: counts the number of occurrences of each letter in a string

Output:

 If we want to obtain the prettified text as a string value instead of displaying

it on the screen, call pprint.pformat().

Module2

33

Using Data Structures to Model Real-World Things

A Tic-Tac-Toe Board

 A tic-tac-toe board looks like a large hash symbol (#) with nine slots that can

each contain an X, an O, or a blank. To represent the board with a dictionary,

we can assign each slot a string-value key as shown in below figure

Figure: The slots of a tic-tactoe board with their corresponding keys

 We can use string values to represent what’s in each slot on the board: 'X', 'O',

or ' ' (a space character).

 To store nine strings. We can use a dictionary of values for this.

 The string value with the key 'top-R' can represent the top-right corner,

 The string value with the key 'low-L' can represent the bottom-left corner

 The string value with the key 'mid-M' can represent the middle, and so on.

 Store this board-as-a-dictionary in a variable named the Board.

Module2

34

 The data structure stored in the theBoard variable represents the tic-tactoe

board in the below Figure

Figure: An empty tic-tac-toe board

 Since the value for every key in theBoard is a single-space string, this

dictionary represents a completely clear board. If player X went first and

chose the middle space, you could represent that board with this dictionary as

shown below

Figure: A first move

Module2

35

 A board where player O has won by placing Os across the top might look

like this

 The data structure in theBoard now represents the tic-tac-toe board in the

below Figure.

Figure: Player O wins.

 The player sees only what is printed to the screen, not the contents of

variables.

 The tic-tac-toe program is updated as below

Module2

36

Output:

The printBoard() function can handle any tic-tac-toe data structure you pass it

Program

Output:

 Now we created a data structure to represent a tic-tac-toe board and wrote

code in printBoard() to interpret that data structure, we now have a program

that “models” the tic-tac-toe board.

Module2

37

Program: allows the players to enter their moves

Module2

38

Output:

The new code prints out the board at the start of each new turn 1, gets the active

player’s move 2, updates the game board accordingly 3, and then swaps the active

player 4 before moving on to the next turn.

Nested Dictionaries and Lists

 We can have program that contains dictionaries and lists which in turn

contain other dictionaries and lists.

 Lists are useful to contain an ordered series of values, and dictionaries are

useful for associating keys with values.

Program: which contains nested dictionaries in order to see who is bringing what

to a picnic.

Module2

39

Inside the totalBrought() function, the for loop iterates over the keyvalue pairs in

guests 1.

 Inside the loop, the string of the guest’s name is assigned to k, and the

dictionary of picnic items they’re bringing is assigned to v 2.

 If the item parameter exists as a key in this dictionary, it’s value (the

quantity) is added to numBrought

Output:

Module2

40

CHAPTER3: MANIPULATING STRINGS

Working with strings

 String Literals

 String values begin and end with a single quote.

 But we want to use either double or single quotes within a string then we

have a multiple ways to do it as shown below

Double Quotes

 One benefit of using double quotes is that the string can have a single quote character in it.

 Since the string begins with a double quote, Python knows that the single

quote is part of the string and not marking the end of the string

Escape Characters

 If you need to use both single quotes and double quotes in the string, you’ll

need to use escape characters.

 An escape character consists of a backslash (\) followed by the character you

want to add to the string

Module2

41

 Python knows that the single quote in Bob\'s has a backslash, it is not a

single quote meant to end the string value. The escape characters \' and \"

allows to put single quotes and double quotes inside your strings,

respectively .

Ex:

 The different special escape characters can be used in a program as listed

below in a table.

Module2

42

Raw Strings

 You can place an r before the beginning quotation mark of a string to make

it a raw string. A raw string completely ignores all escape characters and

prints any backslash that appears in the string

Multiline Strings with Triple Quotes

 A multiline string in Python begins and ends with either three single quotes

or three double quotes.

 Any quotes, tabs, or newlines in between the “triple quotes” are considered

part of the string

Program

Output

Module2

43

The following print() call would print identical text but doesn’t use a multiline

string

Multiline Comments

 While the hash character (#) marks the beginning of a comment for the rest

of the line.

 A multiline string is often used for comments that span multiple lines

Module2

44

Indexing and Slicing Strings

 Strings use indexes and slices the same way lists do. We can think of the

string 'Hello world!' as a list and each character in the string as an item with

a corresponding index.





 The space and exclamation point are included in the character count, so

'Hello world!' is 12 characters long.

 If we specify an index, you’ll get the character at that position in the string



 If we specify a range from one index to another, the starting index is

included and the ending index is not.





 The substring we get from spam[0:5] will include everything from spam[0]

to spam[4], leaving out the space at index 5.

Module2

45

The in and not in Operators with Strings

 The in and not in operators can be used with strings just like with list

values.

 An expression with two strings joined using in or not in will evaluate to a

Boolean True or False.

 These expressions test whether the first string (the exact string, case

sensitive) can be found within the second string.

Useful String Methods

 Several string methods analyze strings or create transformed string values.

The upper(), lower(), isupper(), and islower() String

Methods

 The upper() and lower() string methods return a new string where all the

letters in the original string have been converted to uppercase or lowercase,

respectively.

Module2

46

These methods do not change the string itself but return new string values.

 If we want to change the original string, we have to call upper() or lower()

on the string and then assign the new string to the variable where the original

was stored.

 The upper() and lower() methods are helpful if we need to make a case-

insensitive comparison.

 In the following small program, it does not matter whether the user types

Great, GREAT, or grEAT, because the string is first converted to lowercase

output

Module2

47

 The isupper() and islower() methods will return a Boolean True value if the

string has at least one letter and all the letters are uppercase or lowercase,

respectively. Otherwise, the method returns False.

 Since the upper() and lower() string methods themselves return strings, you can call string

methods on those returned string values as well. Expressions that do this will look like a

chain of method calls.







The isX String Methods

There are several string methods that have names beginning with the word is. These methods return a

Boolean value that describes the nature of the string.

Module2

48

 Here are some common isX string methods:

1.isalpha() returns True if the string consists only of letters and is not blank.

2.isalnum() returns True if the string consists only of letters and numbers and is

not blank.

3.isdecimal() returns True if the string consists only of numeric characters and

is not blank.

4.isspace() returns True if the string consists only of spaces, tabs, and newlines

and is not blank.

5.istitle() returns True if the string consists only of words that begin with an

uppercase letter followed by only lowercase letters.

 The isX string methods are helpful when you need to validate user input.

 For example, the following program repeatedly asks users for their age and a password until

they provide valid input.

Module2

49

 output

The startswith() and endswith() String Methods

Module2

50

 The startswith() and endswith() methods return True if the string value they

are called on begins or ends (respectively) with the string passed to the

method; otherwise, they return False.

 These methods are useful alternatives to the == equals operator if we need to

check only whether the first or last part of the string, rather than the whole

thing, is equal to another string.

The join() and split() String Methods

Join()

 The join() method is useful when we have a list of strings that need to be

joined together into a single string value.

 The join() method is called on a string, gets passed a list of strings, and

returns a string. The returned string is the concatenation of each string in the

passed-in list.





string join() calls on is inserted between each string of the list argument.

 Ex: when join(['cats', 'rats', 'bats']) is called on the ', ' string, the returned

string is 'cats, rats, bats'.

 join() is called on a string value and is passed a list value.

Split()

The split() method is called on a string value and returns a list of strings

Module2

51

We can pass a delimiter string to the split() method to specify a different string to

split upon

A common use of split() is to split a multiline string along the newline characters

 Passing split() the argument '\n' lets us split the multiline string stored in

spam along the newlines and return a list in which each item corresponds to

one line of the string.

Module2

52

Justifying Text with rjust(), ljust(), and center()

 The rjust() and ljust() string methods return a padded version of the string

they are called on, with spaces inserted to justify the text.

 The first argument to both methods is an integer length for the justified

string

 'Hello'.rjust(10) says that we want to right-justify 'Hello' in a string of total

length 10. 'Hello' is five characters, so five spaces will be added to its left,

giving us a string of 10 characters with 'Hello' justified right.

 An optional second argument to rjust() and ljust() will specify a fill

character other than a space character

The center() string method works like ljust() and rjust() but centers the text rather

than justifying it to the left or right

Module2

53

These methods are especially useful when you need to print tabular data that has

the correct spacing.

 In the below program, we define a printPicnic() method that will take in a

dictionary of information and use center(), ljust(), and rjust() to display that

information in a neatly aligned table-like format.

 The dictionary that we’ll pass to printPicnic() is picnicItems.

 In picnicItems, we have 4 sandwiches, 12 apples, 4 cups, and 8000 cookies.

We want to organize this information into two columns, with the name of

the item on the left and the

 quantity on the right.

Module2

54

Output

Removing Whitespace with strip(), rstrip(), and lstrip()

 The strip() string method will return a new string without any whitespace

characters at the beginning or end.

 The lstrip() and rstrip() methods will remove whitespace characters from the

left and right ends, respectively.

Optionally, a string argument will specify which characters on the ends should be

stripped.

Module2

55

 Passing strip() the argument 'ampS' will tell it to strip occurences of a, m, p,

and capital S from the ends of the string stored in spam.

 The order of the characters in the string passed to strip() does not matter:

strip('ampS') will do the same thing as strip('mapS') or strip('Spam').

Copying and Pasting Strings with the pyperclip Module

The pyperclip module has copy() and paste() functions that can send text to and

receive text from your computer’s clipboard

Of course, if something outside of your program changes the clipboard contents,

the paste() function will return it.

Module2

56

Project: Password Locker

We probably have accounts on many different websites.

 It’s a bad habit to use the same password for each of them because if any of

those sites has a security breach, the hackers will learn the password to all of

your other accounts.

 It’s best to use password manager software on your computer that uses one

master password to unlock the password manager.

 Then you can copy any account password to the clipboard and paste it into

the website’s Password field

 The password manager program you’ll create in this example isn’t secure,

but it offers a basic demonstration of how such programs work.

Step 1: Program Design and Data Structures
 We have to run this program with a command line argument that is the

account’s name--for instance, email or blog. That account’s password will

be copied to the clipboard so that the user can paste it into a Password field.

The user can have long, complicated passwords without having to memorize

them.

 We need to start the program with a #! (shebang) line and should also write a

comment that briefly describes the program. Since we want to associate each

account’s name with its password, we can store these as strings in a

dictionary

Step 2: Handle Command Line Arguments

The command line arguments will be stored in the variable sys.argv.

Module2

57

 The first item in the sys.argv list should always be a string containing the

program’s filename ('pw.py'), and the second item should be the first

command line argument.

Step 3: Copy the Right Password

 The account name is stored as a string in the variable account, you need to

see whether it exists in the PASSWORDS dictionary as a key. If so, you

want to copy the key’s value to the clipboard using pyperclip.copy().

Module2

58

 This new code looks in the PASSWORDS dictionary for the account name.

If the account name is a key in the dictionary, we get the value

corresponding to that key, copy it to the clipboard, and print a message

saying that we copied the value. Otherwise, we print a message saying

there’s no account with that name.

 On Windows, you can create a batch file to run this program with the win-R

Run window. Type the following into the file editor and save the file as

pw.bat in the C:\Windows folder:

 With this batch file created, running the password-safe program on

Windows is just a matter of pressing win-R and typing pw <account name>.

Project: Adding Bullets to Wiki Markup

When editing a Wikipedia article, we can create a bulleted list by putting each list

item on its own line and placing a star in front.

 But say we have a really large list that we want to add bullet points to. We

could just type those stars at the beginning of each line, one by one. Or we

could automate this task with a short Python script.

 The bulletPointAdder.py script will get the text from the clipboard, add a

star and space to the beginning of each line, and then paste this new text to

the clipboard.

Module2

59

 Ex:

 

Program output



Step 1: Copy and Paste from the Clipboard

You want the bulletPointAdder.py program to do the following:

1. Paste text from the clipboard

2. Do something to it

3. Copy the new text to the clipboard

Steps 1 and 3 are pretty straightforward and involve the pyperclip.copy() and

pyperclip.paste() functions. saving the following program as bulletPointAdder.py:

Module2

60

Step 2: Separate the Lines of Text and Add the Star

 The call to pyperclip.paste() returns all the text on the clipboard as one big

string. If we used the “List of Lists of Lists” example, the string stored in

text.

 The \n newline characters in this string cause it to be displayed with multiple

lines when it is printed or pasted from the clipboard.

 We could write code that searches for each \n newline character in the string

and then adds the star just after that. But it would be easier to use the split()

method to return a list of strings, one for each line in the original string, and

then add the star to the front of each string in the list.

We split the text along its newlines to get a list in which each item is one line of

the text. For each line, we add a star and a space to the start of the line. Now each

string in lines begins with a star.

Module2

61

Step 3: Join the Modified Lines

 The lines list now contains modified lines that start with stars.

 pyperclip.copy() is expecting a single string value, not a list of string values.

To make this single string value, pass lines into the join() method to get a

single string joined from the list’s strings.

 When this program is run, it replaces the text on the clipboard with text that

has stars at the start of each line

Module2

62

ASSIGNMENT 2

1.Discuss list and dictionary data structure with example for each

2.Explain negative indexing,sclicing,index(),append(),remove(),insert(),sort() with

suitable examples

3.Explain the use of in and not in operators in list with suitable examples.

4.List Concatenation and List Replication, remove and sel statements

5.What are in and not in operators explain with example

6. Write Magic 8 Ball with a list program

7.Explain The Multiple Assignment Trick and augment assignment operators

8.What are list and tuple explain with example

9.Explain The keys(), values(), and items() Methods

10. The upper(), lower(), isupper(), and islower() String Methods

11.Explain The isX String Methods and types

12.The join() and split() String Methods with examples

13. The startswith() and endswith() String Methods

