
Module 1

1

What is Python? Executive Summary

Python is an interpreted, object-oriented, high-level programming language with dynamic

semantics. Its high-level built in data structures, combined with dynamic typing and dynamic

binding, make it very attractive for Rapid Application Development, as well as for use as a

scripting or glue language to connect existing components together. Python's simple, easy to learn

syntax emphasizes readability and therefore reduces the cost of program maintenance. Python

supports modules and packages, which encourages program modularity and code reuse. The

Python interpreter and the extensive standard library are available in source or binary form without

charge for all major platforms, and can be freely distributed.

ENTERING EXPRESSIONS INTO THE INTERACTIVE SHELL

Click the New button and save an empty file as blank.py. When you run this blank file by clicking

the Run button or pressing F5, Enter 2 + 2 at the prompt to have Python do some simple math.

>>> 2 + 2

4

>>

In Python, 2 + 2 is called an expression, which is the most basic kind of programming instruction

in the language. Expressions consist of values (such as 2) and operators (such as +), and they can

always evaluate (that is, reduce) down to a single value, In the previous example, 2 + 2 is evaluated

down to a single value, 4. A single value with no operators is also considered an expression, though

it evaluates only to itself, as shown here:

>>> 2

2

Precedence

The order of operations (also called precedence) of Python math operators is

similar to that of mathematics. The ** operator is evaluated first; the *, /, //,

and % operators are evaluated next, from left to right; and the + and - operators

are evaluated last (also from left to right).

>>> 2 + 3 * 6

20

>>> (2 + 3) * 6

30

>>> 48565878 * 578453

28093077826734

>>> 2 ** 8

256

>>> 23 / 7

3.2857142857142856

>>> 23 // 7

3

>>> 23 % 7

Module 1

2

2

>>> 2 + 2

4

>>> (5 - 1) * ((7 + 1) / (3 - 1))

16.0

Python won’t be able to understand it and will display a SyntaxError error

message, as shown here:

>>> 5 +

 File "<stdin>", line 1

 5 +

 ^

SyntaxError: invalid syntax

>>> 42 + 5 + * 2

 File "<stdin>", line 1

 42 + 5 + * 2

 ^

SyntaxError: invalid syntax

THE INTEGER, FLOATING-POINT, AND STRING DATA TYPES

A data type is a category for values, and every value belongs to exactly one data

type.

The most common data types in Python are listed in Table. The values -

2 and 30, for example, are said to be integer values.

Module 1

3

The integer (or int) data type indicates values that are whole numbers. Numbers

with a decimal point, such as 3.14, are called floating-point numbers (or floats).

Note that even though the value 42 is an integer, the value 42.0 would be a

floating-point number.

Table

STRING CONCATENATION AND REPLICATION

+ is the addition operator when it operates on two integers or floating-point values.

However, when + is used on two string values, it joins the strings as the string

concatenation operator.

>>> 'Alice' + 'Bob'

'AliceBob'

The expression evaluates down to a single, new string value that combines the

text of the two strings. However, if you try to use the + operator on a string and

an integer value

>>> 'Alice' + 42

Traceback (most recent call last):

 File "<pyshell#0>", line 1, in <module>

 'Alice' + 42

TypeError: can only concatenate str (not "int") to str

The error message can only concatenate str (not "int") to str means that Python

thought you were trying to concatenate an integer to the string 'Alice'. Your code

will have to explicitly convert the integer to a string because Python cannot do

this automatically. (Converting data types will be explained in “Dissecting Your

Program” on page 13 when we talk about the str(), int(), and float() functions.)

The * operator multiplies two integer or floating-point values. But when

the * operator is used on one string value and one integer value, it becomes

https://automatetheboringstuff.com/2e/chapter1/#calibre_link-97
https://automatetheboringstuff.com/2e/chapter1/#calibre_link-97
https://automatetheboringstuff.com/2e/chapter1/#calibre_link-762

Module 1

4

the string replication operator. Enter a string multiplied by a number into the

interactive shell to see this in action.

>>> 'Alice' * 5

'AliceAliceAliceAliceAlice'

The * operator can be used with only two numeric values (for multiplication), or

one string value and one integer value (for string replication). Otherwise, Python

will just display an error message, like the following:

>>> 'Alice' * 'Bob'

Traceback (most recent call last):

 File "<pyshell#32>", line 1, in <module>

 'Alice' * 'Bob'

TypeError: can't multiply sequence by non-int of type 'str'

>>> 'Alice' * 5.0

Traceback (most recent call last):

 File "<pyshell#33>", line 1, in <module>

 'Alice' * 5.0

TypeError: can't multiply sequence by non-int of type 'float'

VARIABLES

A variable is like a box in the computer’s memory where you can store a single

value. If you want to use the result of an evaluated expression later in your

program, you can save it inside a variable.

You’ll store values in variables with an assignment statement. An assignment

statement consists of a variable name, an equal sign (called the assignment

operator), and the value to be stored. If you enter the assignment statement spam

= 42, then a variable named spam will have the integer value 42 stored in it.

➊ >>> spam = 40
 >>> spam

 40

 >>> eggs = 2

➋ >>> spam + eggs
 42

 >>> spam + eggs + spam

 82

➌ >>> spam = spam + 2
 >>> spam

 42

A variable is initialized (or created) the first time a value is stored in it ➊. After

that, you can use it in expressions with other variables and values ➋. When a

variable is assigned a new value ➌, the old value is forgotten, which is

Module 1

5

why spam evaluated to 42 instead of 40 at the end of the example. This is

called overwriting the variable. Enter the following code into the interactive

shell to try overwriting a string:

>>> spam = 'Hello'

>>> spam

'Hello'

>>> spam = 'Goodbye'

>>> spam

'Goodbye'

Variable Names

A Python variable is a reserved memory location to store values. In other words, a variable in a python

program gives data to the computer for processing, variable it obeys the following three

rules.

FLOW CONTROL

Flow control statements can decide which Python instructions to execute under

which conditions, These flow control statements directly correspond to the

symbols in a flowchart, In a flowchart, there is usually more than one way to go

from the start to the end. The same is true for lines of code in a computer

program. Flowcharts represent these branching points with diamonds, while the

Module 1

6

other steps are represented with rectangles. The starting and ending steps are

represented with rounded rectangles.

BOOLEAN VALUES

While the integer, floating-point, and string data types have an unlimited number

of possible values, the Boolean data type has only two values: True and False.

➊ >>> spam = True
 >>> spam

 True

➋ >>> true
 Traceback (most recent call last):

 File "<pyshell#2>", line 1, in <module>

 true

 NameError: name 'true' is not defined

➌ >>> True = 2 + 2
 SyntaxError: can't assign to keyword

Boolean values are used in expressions and can be stored in variables ➊. If you

don’t use the proper case ➋ or you try to use True and False for variable names ➌,

Python will give you an error message.

COMPARISON OPERATORS

Comparison operators, also called relational operators, compare two values and

evaluate down to a single Boolean value. Table shows the lists the comparison

operators.

Table

Module 1

7

These operators evaluate to True or False depending on the values you give them

>>> 42 == 42

True

>>> 42 == 99

False

>>> 2 != 3

True

>>> 2 != 2

False

The operator, == (equal to) evaluates to True when the values on both sides are

the same, and != (not equal to) evaluates to True when the two values are

different. The == and != operators can actually work with values of any data

type.

>>> 'hello' == 'hello'

 True

 >>> 'hello' == 'Hello'

 False

 >>> 'dog' != 'cat'

 True

 >>> True == True

 True

 >>> True != False

 True

 >>> 42 == 42.0

 True

➊ >>> 42 == '42'
 False

Note that an integer or floating-point value will always be unequal to a string

value. The expression 42 == '42' ➊ evaluates to False because Python

considers the integer 42 to be different from the string '42'.

The <, >, <=, and >= operators, on the other hand, work properly only with

integer and floating-point values.
>>> 42 < 100

 True

 >>> 42 > 100

 False

 >>> 42 < 42

 False

 >>> eggCount = 42

➊ >>> eggCount <= 42

 True

 >>> myAge = 29

➋ >>> myAge >= 10

 True

Module 1

8

THE DIFFERENCE BETWEEN THE == AND = OPERATORS

 The == operator (equal to) asks whether two values are the same as each other.

 The = operator (assignment) puts the value on the right into the variable on the

left.

BOOLEAN OPERATORS

The three Boolean operators (and, or, and not) are used to compare Boolean

values.

Binary Boolean Operators

The and and or operators always take two Boolean values (or expressions), so

they’re considered binary operators. The and operator evaluates an expression

to True if both Boolean values are True; otherwise, it evaluates to False. Enter

some expressions using and into the interactive shell to see it in action.
>>> True and True

True

>>> True and False

False

A truth table shows every possible result of a Boolean operator. Table is the truth

table for the and operator.

Table : The and Operator’s Truth Table

Module 1

9

Table : The or Operator’s Truth Table

Table : The not Operator’s Truth Table

MIXING BOOLEAN AND COMPARISON OPERATORS

The and, or, and not operators are called Boolean operators because they always

operate on the Boolean values True and False. While expressions like 4 < 5 aren’t

Boolean values, they are expressions that evaluate down to Boolean values.

>>> (4 < 5) and (5 < 6)

True

>>> (4 < 5) and (9 < 6)

False

>>> (1 == 2) or (2 == 2)

True

The computer will evaluate the left expression first, and then it will evaluate the

right expression. When it knows the Boolean value for each, it will then evaluate

the whole expression down to one Boolean value.

Module 1

10

We can also use multiple Boolean operators in an expression, along with the

comparison operators.

>>> 2 + 2 == 4 and not 2 + 2 == 5 and 2 * 2 == 2 + 2

True

ELEMENTS OF FLOW CONTROL

Conditions

The Boolean expressions you’ve seen so far could all be considered conditions,

which are the same thing as expressions; condition is just a more specific name

in the context of flow control statements. Conditions always evaluate down to a

Boolean value, True or False. A flow control statement decides what to do based

on whether its condition is True or False, and almost every flow control

statement uses a condition.

Blocks of Code

Lines of Python code can be grouped together in blocks. You can tell when a

block begins and ends from the indentation of the lines of code. There are three

rules for blocks.

 Blocks begin when the indentation increases.

 Blocks can contain other blocks.

 Blocks end when the indentation decreases to zero or to a containing block’s

indentation.

Module 1

11

Example:

name = 'Mary'

 password = 'swordfish'

 if name == 'Mary':

 ➊ print('Hello, Mary')
 if password == 'swordfish':

 ➋ print('Access granted.')
 else:

 ➌ print('Wrong password.')

The first block of code ➊ starts at the line print('Hello, Mary') and contains all

the lines after it.

FLOW CONTROL STATEMENTS

A program’s control flow is the order in which the program’s code executes. The

control flow of a Python program is regulated by conditional statements, loops, and

function calls.

if Statements

The most common type of flow control statement is the if statement.

An if statement is executed if the condition is true else false.

In Python, an if statement consists of the following:

 The if keyword

 A condition (that is, an expression that evaluates to True or False)

 A colon

 Starting on the next line, an indented block of code (called the if clause)

Module 1

12

Figure : The flowchart for an if statement

else Statements

An if clause can optionally be followed by an else statement. The else clause

is executed only when the if statement’s condition is False. In plain English,

an else statement could be read as, “If this condition is true, execute this code.

Or else, execute that code.” An else statement doesn’t have a condition, and in

code, an else statement always consists of the following:

 The else keyword

 A colon

 Starting on the next line, an indented block of code (called the else clause)

The example below uses an else statement to offer a different greeting if the

person’s name isn’t Alice.

Module 1

13

Figure : The flowchart for an else statement

elif Statements

The elif statement is an “else if” statement that always follows an if or

another elif statement. It provides another condition that is checked only if all

of the previous conditions were False. In code, an elif statement always consists

of the following:

 The elif keyword

 A condition (that is, an expression that evaluates to True or False)

 A colon

 Starting on the next line, an indented block of code (called the elif clause)

 The elif keyword

 A condition (that is, an expression that evaluates to True or False)

 A colon

Starting on the next line, an indented player_age = 12

Module 1

14

if player_age >= 18:

 print("You could be in college.")

elif player_age >= 13:

 print("You can also attend iD Academies!")

elif player_age >= 7:

 print("You can attend iD Tech Camps!")

else:

 print("You're young.")

 if player_age > 18 : #Happens if the age is greater than 18.

 elif player_age > 13 : #Only happens if the age is not greater than 18 and greater than

13.

An else statement doesn't look for a specific condition. Else statements occur after an if or

elif statement in your code.

 if player_age > 18 : #Happens if the age is greater than 18.

 else : #Would happen for any other age not specified above.

Every if/elif/else block must begin with one regular if statement and end with a single else

statement, but you can have as many elif statements in the middle as you want!

while Loop Statements

You can make a block of code execute over and over again using

a while statement. The code in a while clause will be executed as long as

the while statement’s condition is True. In code, a while statement always consists

of the following:

 The while keyword

 A condition (that is, an expression that evaluates to True or False)

 A colon

 Starting on the next line, an indented block of code (called the while clause)

A while statement looks similar to an if statement. The difference is in how they

behave. At the end of an if clause, the program execution continues after

the if statement. But at the end of a while clause, the program execution jumps

back to the start of the while statement. The while clause is often called the while

loop or just the loop.

spam = 0

if spam < 5:

 print('Hello, world.')

 spam = spam + 1

Module 1

15

Here is the code with a while statement:

spam = 0

while spam < 5:

 print('Hello, world.')

 spam = spam + 1

These statements are similar—both if and while check the value of spam, and if

it’s less than 5, they print a message. But when you run these two code snippets,

something very different happens for each one. For the if statement, the output

is simply "Hello, world.". But for the while statement, it’s "Hello,

world." repeated five times!

Figure : The flowchart for the if statement code

Module 1

16

Figure : The flowchart for the while statement code

The code with the if statement checks the condition, and it prints Hello,

world. only once if that condition is true. The code with the while loop, on the

other hand, will print it five times. The loop stops after five prints because the

integer in spam increases by one at the end of each loop iteration, which means

that the loop will execute five times before spam < 5 is False.

In the while loop, the condition is always checked at the start of each iteration, If

the condition is True, then the clause is executed, and afterward, the condition is

checked again. The first time the condition is found to be False, the while clause

is skipped.

Module 1

17

break Statements:

If the execution reaches a break statement, it immediately exits the while loop’s

clause. In code, a break statement simply contains the break keyword.

➊ while True:
 print('Please type your name.')

 ➋ name = input()

 ➌ if name == 'your name':

 ➍ break

➎ print('Thank you!')

The first line ➊ creates an infinite loop; it is a while loop whose condition is

always True. After the program execution enters this loop, it will exit the loop

only when a break statement is executed, this program asks the user to enter your

name ➋. Now, however, while the execution is still inside the while loop,

an if statement checks ➌ whether name is equal to 'your name'. If this condition

is True, the break statement is run ➍, and the execution moves out of the loop

to print('Thank you!') ➎. Otherwise, the if statement’s clause that contains

the break statement is skipped, which puts the execution at the end of

the while loop. At this point, the program execution jumps back to the start of

the while statement ➊ to recheck the condition. Since this condition is merely

the True Boolean value, the execution enters the loop to ask the user to

Module 1

18

type you’re your name again

continue Statements

Like break statements, continue statements are used inside loops. When the

program execution reaches a continue statement, the program execution

immediately jumps back to the start of the loop and reevaluates the loop’s

condition

Example:

 while True:

 print('Who are you?')

 name = input()

 ➊ if name != 'Joe':

 ➋ continue
 print('Hello, Joe. What is the password? (It is a fish.)')

 ➌ password = input()
 if password == 'swordfish':

 ➍ break

➎ print('Access granted.')

Module 1

19

If the user enters any name besides Joe ➊, the continue statement ➋ causes the

program execution to jump back to the start of the loop. When the program

reevaluates the condition, the execution will always enter the loop, since the

condition is simply the value True. Once the user makes it past that if statement,

they are asked for a password ➌. If the password entered is swordfish, then

the break statement ➍ is run, and the execution jumps out of the while loop to

print Access granted ➎. Otherwise, the execution continues to the end of

the while loop, where it then jumps back to the start of the loop.

Fig :Flowchart of continue statement

Module 1

20

Local & Global variables

Local variables:- local variables are those which are defined inside a function and their scope is

limited to that function only.In other words, we can say that local variables are accessible only

inside the function in which it was initialized whereas the global variables are accessible

throughout the program and inside every function.

Ex:

def f():

local variable

 s = "I love Geeksforgeeks"

 print(s)

f()

Output:

I love Geeksforgeeks

 Can a local variable be used outside a function?
If we will try to use this local variable outside the function then let’s see what will happen.

def f():

s = "I love Geeksforgeeks"

 print("Inside Function:", s)

f()

print(s)

Output:

NameError: name 's' is not defined

Global Variables:-

These are those which are defined outside any function and which are

accessible throughout the program, i.e., inside and outside of every function

Ex:

def f():

 print("Inside Function", s)

Global scope

s = "I love Geeksforgeeks"

f()

print("Outside Function", s)

Output
Inside Function I love Geeksforgeeks

Outside Function I love Geeksforgeeks

Module 1

21

FUNCTIONS

 A function is a block of code which only runs when it is called.You can pass data, known

as parameters, into a function.A function can return data as a result. A function is like a

miniprogram within a program.

Ex:

 ➊ def hello():

 ➋ print('Howdy!')
 print('Howdy!!!')

 print('Hello there.')

➌ hello()
 hello()

 hello()

The first line is a def statement ➊, which defines a function named hello(). The code in the block

that follows the def statement ➋ is the body of the function. This code is executed when the

function is called, The hello() lines after the function ➌ are function calls. In code, a function

call is just the function’s name followed by parentheses, possibly with some number of

arguments in between the parentheses. Since this program calls hello() three times, the code in

the hello() function is executed three times. When you run this program, the output looks like

this:

Howdy!

Howdy!!!

Hello there.

Howdy!

Howdy!!!

Hello there.

Howdy!

Howdy!!!

Hello there.

DEF STATEMENTS WITH PARAMETERS

When you call the print() or len() function, you pass them values,

called arguments, by typing them between the parentheses.

Ex:

➊ def hello(name):

 ➋ print('Hello, ' + name)

➌ hello('Alice')

 hello('Bob')

Module 1

22

Output:

Hello, Alice

Hello, Bob

The definition of the hello() function in this program has a parameter

called name ➊. Parameters are variables that contain arguments. When a function

is called with arguments, the arguments are stored in the parameters. The first

time the hello() function is called, it is passed the argument 'Alice' ➌. The

program execution enters the function, and the parameter name is automatically set

to 'Alice', which is what gets printed by the print() statement ➋.

Define, Call, Pass, Argument, Parameter

Ex:

➊ def sayHello(name):
 print('Hello, ' + name)

➋ sayHello('Al')

To define a function is to create it, just like an assignment statement like spam = 42 creates

the spam variable. The def statement defines the sayHello() function ➊.

The sayHello('Al') line ➋ calls the now-created function, sending the execution to the top of the

function’s code. This function call is also known as passing the string value 'Al' to the function. A

value being passed to a function in a function call is an argument. The argument 'Al' is assigned

to a local variable named name. Variables that have arguments assigned to them are parameters.

RETURN VALUES AND RETURN STATEMENTS

A return statement is used to end the execution of the function call and “returns”
the result (value of the expression following the return keyword) to the caller. The
statements after the return statements are not executed. If the return statement
is without any expression, then the special value None is
returned. A return statement is overall used to invoke a function so that the
passed statements can be executed.
Note: Return statement can not be used outside the function.

Syntax:
def fun():

 statements

 .

 .

 return [expression]

Module 1

23

Ex:def cube(x):

 r=x**3

 return r

Return values:

To let a function return a value, use the return statement:

def my_function(x):
 return 5 * x

print(my_function(3))
print(my_function(5))
print(my_function(9))

Output:

15

25

45

KEYWORD ARGUMENTS AND THE PRINT() FUNCTION

Arguments: The terms parameter and argument can be used for the same thing: information that

are passed into a function. From a function's perspective: A parameter is the variable listed inside

the parentheses in the function definition. An argument is the value that are sent to the function

when it is called.

Most arguments are identified by their position in the function call. For

example, random.randint(1, 10) is different from random.randint(10, 1). The function

call random.randint(1, 10) will return a random integer between 1 and 10 because the first

argument is the low end of the range and the second argument is the high end

(while random.randint(10, 1) causes an error).

 the print() function has the optional parameters end and sep to specify what

should be printed at the end of its arguments and between its arguments

(separating them), respectively.

Ex:

print('Hello')

print('World')

output:

Hello

World

Module 1

24

The two outputted strings appear on separate lines because the print() function

automatically adds a newline character to the end of the string it is passed.

However, you can set the end keyword argument to change the newline character

to a different string.

Ex:

print('Hello', end='')

print('World')

Output:

HelloWorld

Similarly, when you pass multiple string values to print(), the function will

automatically separate them with a single space.

>>> print('cats', 'dogs', 'mice')

cats dogs mice

By passing the sep keyword

Ex:

>>> print('cats', 'dogs', 'mice', sep=',')

cats,dogs,mice

THE CALL STACK

When a function call returns, Python removes a frame object from the top of the

stack and moves the execution to the line number stored in it. Note that frame

objects are always added and removed from the top of the stack and not from

any other place.

 Fig:The frame objects of the call stack as abcdCallStack.py calls and returns from functions

The top of the call stack is which function the execution is currently in.

Module 1

25

EXCEPTION HANDLING

Right now, getting an error, or exception, in your Python program means the

entire program will crash. we don’t want this to happen in real-world programs.

Instead, we want the program to detect errors, handle them, and then continue to

run.

As discussed there is a chance of runtime error while doing some program.

One of the possible reasons is wrong input.

For example, consider the

following code segment –

a=int(input("Enter a:"))

b=int(i

nput("

Enter

b:"))

c=a/b

print(c)

When you run the above code, one of the possible situations would be –

Enter a:12

Enter b:0

Traceback (most

recent call

last): c=a/b

ZeroDivisionError: division by zero

For the end-user, such type of system-generated error messages is difficult to handle.

So the code which is prone to runtime error must be executed conditionally within try block.

The try block contains the statements involving suspicious code and the except block

contains the possible remedy (or instructions to user informing what went wrong and

what could be the way to get out of it).

 If something goes wrong with the statements inside try block, the except block will be

executed.

 Otherwise, the except-block will be skipped.

 Consider the example –

a=int(input("Enter a:"))
b=int(input("Enter b:"))

try:

c=a/b

Module 1

26

print(c)

except:
print("Division by zero is not possible")

Output:

Enter a:12

Enter b:0

Division by zero is not possible

Handling an exception using try is called as catching an exception.

In general, catching an exception gives the programmer to fix the probable problem, or

to try again or at least to end the program gracefully.

Question Bank

1.Need for role of precedence,Illustrate the rules of precedence

2.Explain the integer,floating point,and string data types

3.what is string concantination and repplication explain with examples

4.what are variables explain how values are storing to the variables

5.what is an expression made up of?what do all expressions do?

6.Explain with examples Local and Global variables(Scope)

7.What are comparission operators explain with examples?

8.Explain the 3 binary Boolean operators

9.Explain with examples the mixing Boolean with comparision operators

10.Explain all the flow control statements.

11.what are functions?Explain python functions with parameters and return statements

12.brief note on callstack

13.Define exception handling.Explain how exceptions are handled in python.

	What is Python? Executive Summary
	Entering Expressions into the Interactive Shell
	The Integer, Floating-Point, and String Data Types
	String Concatenation and Replication
	Variables
	Variable Names

	FLOW CONTROL
	Boolean Values
	Comparison Operators
	Boolean Operators
	Binary Boolean Operators

	Mixing Boolean and Comparison Operators
	Elements of Flow Control
	Conditions
	Blocks of Code

	Flow Control Statements
	if Statements
	else Statements
	elif Statements
	while Loop Statements
	break Statements:
	If the execution reaches a break statement, it immediately exits the while loop’s clause. In code, a break statement simply contains the break keyword.
	➊ while True: print('Please type your name.') ➋ name = input() ➌ if name == 'your name': ➍ break ➎ print('Thank you!')
	continue Statements

	Global Variables:-
	FUNCTIONS
	def Statements with Parameters
	Define, Call, Pass, Argument, Parameter

	Return Values and return Statements
	Keyword Arguments and the print() Function
	The Call Stack
	Exception Handling
	Output:

